Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature
Au, Pd and Rh nanoparticles were supported on Mn/Na 2 Ti 3 O 7 alkaline titanate nanotubes by the deposition–precipitation with NaOH method. The Pt-Mn/NT alkaline titanate showed outstanding catalytic performance accomplishing complete formaldehyde oxidation at 40 °C with apparent activation energy...
Gespeichert in:
Veröffentlicht in: | Catalysis letters 2020-11, Vol.150 (11), p.3342-3358 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3358 |
---|---|
container_issue | 11 |
container_start_page | 3342 |
container_title | Catalysis letters |
container_volume | 150 |
creator | Camposeco, R. Castillo, S. Nava, N. Maturano, V. Zanella, R. |
description | Au, Pd and Rh nanoparticles were supported on Mn/Na
2
Ti
3
O
7
alkaline titanate nanotubes by the deposition–precipitation with NaOH method. The Pt-Mn/NT alkaline titanate showed outstanding catalytic performance accomplishing complete formaldehyde oxidation at 40 °C with apparent activation energy of 27 kJ mol
−1
. The following tendency was observed for catalytic activity Pt > Au > Rh. The characterizations revealed the importance of the noble metals in the formation of vacancies and OH groups and their ability to activate the alkaline titanate surface oxygen species, which had an impact on the formation of acid sites (Brönsted and Lewis); another key factor for formaldehyde oxidation was metal dispersion. The presence of OH species facilitated the transformation of formaldehyde adsorbed on the M-Mn/alkaline titanate nanotubes, probably through the reaction with adsorbed O species, which promoted the decomposition of formaldehyde to CO
2
at room temperature.
Graphic Abstract |
doi_str_mv | 10.1007/s10562-020-03254-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2441910192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A635334642</galeid><sourcerecordid>A635334642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-9255349562b2f984348335e73373bbf04a5a2f41e9d7545e109aa4789b28d98e3</originalsourceid><addsrcrecordid>eNp9kc9q3DAQh01poWnaF-hJ0FOhTvR3bR2XpWkDaRM2W8hNjO3xrlJbciUZkvfoA1cbF0ouRQcNw_fNCP2K4j2jZ4zS6jwyqla8pJyWVHAlS_miOGGq4mVd6buXuaaMlaLid6-LNzHeU0p1xfRJ8XvjxwmCjd4R35N0QHKDofdhBNfisbWeP5GbRMB1ZHsg38H5zCfbDhjJ7TxNPiTsSNa_ufP18BMGS3Y2gYOET3Sam0xaRy6OQ4cOD48dkusH20GyWYNEtt6PZIfjhAHSHPBt8aqHIeK7v_dp8ePi827ztby6_nK5WV-VrdQqlZorJXK14g3vdS2FrIVQWAlRiabpqQQFvJcMdVcpqZBRDSCrWje87nSN4rT4sMydgv81Y0zm3s_B5ZWGS8l0_jTNM3W2UHsY0FjX-xSgzafD0bbeYW9zf70SSgi5kkfh4zMhMwkf0h7mGM3l7fY5yxe2DT7GgL2Zgh0hPBpGzTFas0RrcrTmKVojsyQWKWbY7TH8e_d_rD9K0KWq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441910192</pqid></control><display><type>article</type><title>Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature</title><source>SpringerLink Journals - AutoHoldings</source><creator>Camposeco, R. ; Castillo, S. ; Nava, N. ; Maturano, V. ; Zanella, R.</creator><creatorcontrib>Camposeco, R. ; Castillo, S. ; Nava, N. ; Maturano, V. ; Zanella, R.</creatorcontrib><description>Au, Pd and Rh nanoparticles were supported on Mn/Na
2
Ti
3
O
7
alkaline titanate nanotubes by the deposition–precipitation with NaOH method. The Pt-Mn/NT alkaline titanate showed outstanding catalytic performance accomplishing complete formaldehyde oxidation at 40 °C with apparent activation energy of 27 kJ mol
−1
. The following tendency was observed for catalytic activity Pt > Au > Rh. The characterizations revealed the importance of the noble metals in the formation of vacancies and OH groups and their ability to activate the alkaline titanate surface oxygen species, which had an impact on the formation of acid sites (Brönsted and Lewis); another key factor for formaldehyde oxidation was metal dispersion. The presence of OH species facilitated the transformation of formaldehyde adsorbed on the M-Mn/alkaline titanate nanotubes, probably through the reaction with adsorbed O species, which promoted the decomposition of formaldehyde to CO
2
at room temperature.
Graphic Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-020-03254-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activation energy ; Aldehydes ; Catalysis ; Catalytic activity ; Chemistry ; Chemistry and Materials Science ; Decomposition reactions ; Formaldehyde ; Gold ; Industrial Chemistry/Chemical Engineering ; Nanoparticles ; Nanotubes ; Noble metals ; Organometallic Chemistry ; Oxidation ; Oxidation-reduction reaction ; Palladium ; Physical Chemistry ; Platinum ; Rhodium ; Room temperature ; Sodium titanate</subject><ispartof>Catalysis letters, 2020-11, Vol.150 (11), p.3342-3358</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-9255349562b2f984348335e73373bbf04a5a2f41e9d7545e109aa4789b28d98e3</citedby><cites>FETCH-LOGICAL-c495t-9255349562b2f984348335e73373bbf04a5a2f41e9d7545e109aa4789b28d98e3</cites><orcidid>0000-0002-2118-5898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-020-03254-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-020-03254-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Camposeco, R.</creatorcontrib><creatorcontrib>Castillo, S.</creatorcontrib><creatorcontrib>Nava, N.</creatorcontrib><creatorcontrib>Maturano, V.</creatorcontrib><creatorcontrib>Zanella, R.</creatorcontrib><title>Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>Au, Pd and Rh nanoparticles were supported on Mn/Na
2
Ti
3
O
7
alkaline titanate nanotubes by the deposition–precipitation with NaOH method. The Pt-Mn/NT alkaline titanate showed outstanding catalytic performance accomplishing complete formaldehyde oxidation at 40 °C with apparent activation energy of 27 kJ mol
−1
. The following tendency was observed for catalytic activity Pt > Au > Rh. The characterizations revealed the importance of the noble metals in the formation of vacancies and OH groups and their ability to activate the alkaline titanate surface oxygen species, which had an impact on the formation of acid sites (Brönsted and Lewis); another key factor for formaldehyde oxidation was metal dispersion. The presence of OH species facilitated the transformation of formaldehyde adsorbed on the M-Mn/alkaline titanate nanotubes, probably through the reaction with adsorbed O species, which promoted the decomposition of formaldehyde to CO
2
at room temperature.
Graphic Abstract</description><subject>Activation energy</subject><subject>Aldehydes</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Decomposition reactions</subject><subject>Formaldehyde</subject><subject>Gold</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Nanoparticles</subject><subject>Nanotubes</subject><subject>Noble metals</subject><subject>Organometallic Chemistry</subject><subject>Oxidation</subject><subject>Oxidation-reduction reaction</subject><subject>Palladium</subject><subject>Physical Chemistry</subject><subject>Platinum</subject><subject>Rhodium</subject><subject>Room temperature</subject><subject>Sodium titanate</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc9q3DAQh01poWnaF-hJ0FOhTvR3bR2XpWkDaRM2W8hNjO3xrlJbciUZkvfoA1cbF0ouRQcNw_fNCP2K4j2jZ4zS6jwyqla8pJyWVHAlS_miOGGq4mVd6buXuaaMlaLid6-LNzHeU0p1xfRJ8XvjxwmCjd4R35N0QHKDofdhBNfisbWeP5GbRMB1ZHsg38H5zCfbDhjJ7TxNPiTsSNa_ufP18BMGS3Y2gYOET3Sam0xaRy6OQ4cOD48dkusH20GyWYNEtt6PZIfjhAHSHPBt8aqHIeK7v_dp8ePi827ztby6_nK5WV-VrdQqlZorJXK14g3vdS2FrIVQWAlRiabpqQQFvJcMdVcpqZBRDSCrWje87nSN4rT4sMydgv81Y0zm3s_B5ZWGS8l0_jTNM3W2UHsY0FjX-xSgzafD0bbeYW9zf70SSgi5kkfh4zMhMwkf0h7mGM3l7fY5yxe2DT7GgL2Zgh0hPBpGzTFas0RrcrTmKVojsyQWKWbY7TH8e_d_rD9K0KWq</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Camposeco, R.</creator><creator>Castillo, S.</creator><creator>Nava, N.</creator><creator>Maturano, V.</creator><creator>Zanella, R.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-2118-5898</orcidid></search><sort><creationdate>20201101</creationdate><title>Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature</title><author>Camposeco, R. ; Castillo, S. ; Nava, N. ; Maturano, V. ; Zanella, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-9255349562b2f984348335e73373bbf04a5a2f41e9d7545e109aa4789b28d98e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation energy</topic><topic>Aldehydes</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Decomposition reactions</topic><topic>Formaldehyde</topic><topic>Gold</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Nanoparticles</topic><topic>Nanotubes</topic><topic>Noble metals</topic><topic>Organometallic Chemistry</topic><topic>Oxidation</topic><topic>Oxidation-reduction reaction</topic><topic>Palladium</topic><topic>Physical Chemistry</topic><topic>Platinum</topic><topic>Rhodium</topic><topic>Room temperature</topic><topic>Sodium titanate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camposeco, R.</creatorcontrib><creatorcontrib>Castillo, S.</creatorcontrib><creatorcontrib>Nava, N.</creatorcontrib><creatorcontrib>Maturano, V.</creatorcontrib><creatorcontrib>Zanella, R.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camposeco, R.</au><au>Castillo, S.</au><au>Nava, N.</au><au>Maturano, V.</au><au>Zanella, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>150</volume><issue>11</issue><spage>3342</spage><epage>3358</epage><pages>3342-3358</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>Au, Pd and Rh nanoparticles were supported on Mn/Na
2
Ti
3
O
7
alkaline titanate nanotubes by the deposition–precipitation with NaOH method. The Pt-Mn/NT alkaline titanate showed outstanding catalytic performance accomplishing complete formaldehyde oxidation at 40 °C with apparent activation energy of 27 kJ mol
−1
. The following tendency was observed for catalytic activity Pt > Au > Rh. The characterizations revealed the importance of the noble metals in the formation of vacancies and OH groups and their ability to activate the alkaline titanate surface oxygen species, which had an impact on the formation of acid sites (Brönsted and Lewis); another key factor for formaldehyde oxidation was metal dispersion. The presence of OH species facilitated the transformation of formaldehyde adsorbed on the M-Mn/alkaline titanate nanotubes, probably through the reaction with adsorbed O species, which promoted the decomposition of formaldehyde to CO
2
at room temperature.
Graphic Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-020-03254-4</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2118-5898</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1011-372X |
ispartof | Catalysis letters, 2020-11, Vol.150 (11), p.3342-3358 |
issn | 1011-372X 1572-879X |
language | eng |
recordid | cdi_proquest_journals_2441910192 |
source | SpringerLink Journals - AutoHoldings |
subjects | Activation energy Aldehydes Catalysis Catalytic activity Chemistry Chemistry and Materials Science Decomposition reactions Formaldehyde Gold Industrial Chemistry/Chemical Engineering Nanoparticles Nanotubes Noble metals Organometallic Chemistry Oxidation Oxidation-reduction reaction Palladium Physical Chemistry Platinum Rhodium Room temperature Sodium titanate |
title | Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20Performance%20of%20Au,%20Pt%20and%20Rh%20Nanoparticles%20Supported%20on%20Mn/Alkali%20Titanate%20Nanotubes%20in%20Formaldehyde%20Oxidation%20at%20Room%20Temperature&rft.jtitle=Catalysis%20letters&rft.au=Camposeco,%20R.&rft.date=2020-11-01&rft.volume=150&rft.issue=11&rft.spage=3342&rft.epage=3358&rft.pages=3342-3358&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-020-03254-4&rft_dat=%3Cgale_proqu%3EA635334642%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441910192&rft_id=info:pmid/&rft_galeid=A635334642&rfr_iscdi=true |