Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature

Au, Pd and Rh nanoparticles were supported on Mn/Na 2 Ti 3 O 7 alkaline titanate nanotubes by the deposition–precipitation with NaOH method. The Pt-Mn/NT alkaline titanate showed outstanding catalytic performance accomplishing complete formaldehyde oxidation at 40 °C with apparent activation energy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis letters 2020-11, Vol.150 (11), p.3342-3358
Hauptverfasser: Camposeco, R., Castillo, S., Nava, N., Maturano, V., Zanella, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3358
container_issue 11
container_start_page 3342
container_title Catalysis letters
container_volume 150
creator Camposeco, R.
Castillo, S.
Nava, N.
Maturano, V.
Zanella, R.
description Au, Pd and Rh nanoparticles were supported on Mn/Na 2 Ti 3 O 7 alkaline titanate nanotubes by the deposition–precipitation with NaOH method. The Pt-Mn/NT alkaline titanate showed outstanding catalytic performance accomplishing complete formaldehyde oxidation at 40 °C with apparent activation energy of 27 kJ mol −1 . The following tendency was observed for catalytic activity Pt > Au > Rh. The characterizations revealed the importance of the noble metals in the formation of vacancies and OH groups and their ability to activate the alkaline titanate surface oxygen species, which had an impact on the formation of acid sites (Brönsted and Lewis); another key factor for formaldehyde oxidation was metal dispersion. The presence of OH species facilitated the transformation of formaldehyde adsorbed on the M-Mn/alkaline titanate nanotubes, probably through the reaction with adsorbed O species, which promoted the decomposition of formaldehyde to CO 2 at room temperature. Graphic Abstract
doi_str_mv 10.1007/s10562-020-03254-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2441910192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A635334642</galeid><sourcerecordid>A635334642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-9255349562b2f984348335e73373bbf04a5a2f41e9d7545e109aa4789b28d98e3</originalsourceid><addsrcrecordid>eNp9kc9q3DAQh01poWnaF-hJ0FOhTvR3bR2XpWkDaRM2W8hNjO3xrlJbciUZkvfoA1cbF0ouRQcNw_fNCP2K4j2jZ4zS6jwyqla8pJyWVHAlS_miOGGq4mVd6buXuaaMlaLid6-LNzHeU0p1xfRJ8XvjxwmCjd4R35N0QHKDofdhBNfisbWeP5GbRMB1ZHsg38H5zCfbDhjJ7TxNPiTsSNa_ufP18BMGS3Y2gYOET3Sam0xaRy6OQ4cOD48dkusH20GyWYNEtt6PZIfjhAHSHPBt8aqHIeK7v_dp8ePi827ztby6_nK5WV-VrdQqlZorJXK14g3vdS2FrIVQWAlRiabpqQQFvJcMdVcpqZBRDSCrWje87nSN4rT4sMydgv81Y0zm3s_B5ZWGS8l0_jTNM3W2UHsY0FjX-xSgzafD0bbeYW9zf70SSgi5kkfh4zMhMwkf0h7mGM3l7fY5yxe2DT7GgL2Zgh0hPBpGzTFas0RrcrTmKVojsyQWKWbY7TH8e_d_rD9K0KWq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441910192</pqid></control><display><type>article</type><title>Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature</title><source>SpringerLink Journals - AutoHoldings</source><creator>Camposeco, R. ; Castillo, S. ; Nava, N. ; Maturano, V. ; Zanella, R.</creator><creatorcontrib>Camposeco, R. ; Castillo, S. ; Nava, N. ; Maturano, V. ; Zanella, R.</creatorcontrib><description>Au, Pd and Rh nanoparticles were supported on Mn/Na 2 Ti 3 O 7 alkaline titanate nanotubes by the deposition–precipitation with NaOH method. The Pt-Mn/NT alkaline titanate showed outstanding catalytic performance accomplishing complete formaldehyde oxidation at 40 °C with apparent activation energy of 27 kJ mol −1 . The following tendency was observed for catalytic activity Pt &gt; Au &gt; Rh. The characterizations revealed the importance of the noble metals in the formation of vacancies and OH groups and their ability to activate the alkaline titanate surface oxygen species, which had an impact on the formation of acid sites (Brönsted and Lewis); another key factor for formaldehyde oxidation was metal dispersion. The presence of OH species facilitated the transformation of formaldehyde adsorbed on the M-Mn/alkaline titanate nanotubes, probably through the reaction with adsorbed O species, which promoted the decomposition of formaldehyde to CO 2 at room temperature. Graphic Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-020-03254-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activation energy ; Aldehydes ; Catalysis ; Catalytic activity ; Chemistry ; Chemistry and Materials Science ; Decomposition reactions ; Formaldehyde ; Gold ; Industrial Chemistry/Chemical Engineering ; Nanoparticles ; Nanotubes ; Noble metals ; Organometallic Chemistry ; Oxidation ; Oxidation-reduction reaction ; Palladium ; Physical Chemistry ; Platinum ; Rhodium ; Room temperature ; Sodium titanate</subject><ispartof>Catalysis letters, 2020-11, Vol.150 (11), p.3342-3358</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-9255349562b2f984348335e73373bbf04a5a2f41e9d7545e109aa4789b28d98e3</citedby><cites>FETCH-LOGICAL-c495t-9255349562b2f984348335e73373bbf04a5a2f41e9d7545e109aa4789b28d98e3</cites><orcidid>0000-0002-2118-5898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-020-03254-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-020-03254-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Camposeco, R.</creatorcontrib><creatorcontrib>Castillo, S.</creatorcontrib><creatorcontrib>Nava, N.</creatorcontrib><creatorcontrib>Maturano, V.</creatorcontrib><creatorcontrib>Zanella, R.</creatorcontrib><title>Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>Au, Pd and Rh nanoparticles were supported on Mn/Na 2 Ti 3 O 7 alkaline titanate nanotubes by the deposition–precipitation with NaOH method. The Pt-Mn/NT alkaline titanate showed outstanding catalytic performance accomplishing complete formaldehyde oxidation at 40 °C with apparent activation energy of 27 kJ mol −1 . The following tendency was observed for catalytic activity Pt &gt; Au &gt; Rh. The characterizations revealed the importance of the noble metals in the formation of vacancies and OH groups and their ability to activate the alkaline titanate surface oxygen species, which had an impact on the formation of acid sites (Brönsted and Lewis); another key factor for formaldehyde oxidation was metal dispersion. The presence of OH species facilitated the transformation of formaldehyde adsorbed on the M-Mn/alkaline titanate nanotubes, probably through the reaction with adsorbed O species, which promoted the decomposition of formaldehyde to CO 2 at room temperature. Graphic Abstract</description><subject>Activation energy</subject><subject>Aldehydes</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Decomposition reactions</subject><subject>Formaldehyde</subject><subject>Gold</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Nanoparticles</subject><subject>Nanotubes</subject><subject>Noble metals</subject><subject>Organometallic Chemistry</subject><subject>Oxidation</subject><subject>Oxidation-reduction reaction</subject><subject>Palladium</subject><subject>Physical Chemistry</subject><subject>Platinum</subject><subject>Rhodium</subject><subject>Room temperature</subject><subject>Sodium titanate</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc9q3DAQh01poWnaF-hJ0FOhTvR3bR2XpWkDaRM2W8hNjO3xrlJbciUZkvfoA1cbF0ouRQcNw_fNCP2K4j2jZ4zS6jwyqla8pJyWVHAlS_miOGGq4mVd6buXuaaMlaLid6-LNzHeU0p1xfRJ8XvjxwmCjd4R35N0QHKDofdhBNfisbWeP5GbRMB1ZHsg38H5zCfbDhjJ7TxNPiTsSNa_ufP18BMGS3Y2gYOET3Sam0xaRy6OQ4cOD48dkusH20GyWYNEtt6PZIfjhAHSHPBt8aqHIeK7v_dp8ePi827ztby6_nK5WV-VrdQqlZorJXK14g3vdS2FrIVQWAlRiabpqQQFvJcMdVcpqZBRDSCrWje87nSN4rT4sMydgv81Y0zm3s_B5ZWGS8l0_jTNM3W2UHsY0FjX-xSgzafD0bbeYW9zf70SSgi5kkfh4zMhMwkf0h7mGM3l7fY5yxe2DT7GgL2Zgh0hPBpGzTFas0RrcrTmKVojsyQWKWbY7TH8e_d_rD9K0KWq</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Camposeco, R.</creator><creator>Castillo, S.</creator><creator>Nava, N.</creator><creator>Maturano, V.</creator><creator>Zanella, R.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-2118-5898</orcidid></search><sort><creationdate>20201101</creationdate><title>Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature</title><author>Camposeco, R. ; Castillo, S. ; Nava, N. ; Maturano, V. ; Zanella, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-9255349562b2f984348335e73373bbf04a5a2f41e9d7545e109aa4789b28d98e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation energy</topic><topic>Aldehydes</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Decomposition reactions</topic><topic>Formaldehyde</topic><topic>Gold</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Nanoparticles</topic><topic>Nanotubes</topic><topic>Noble metals</topic><topic>Organometallic Chemistry</topic><topic>Oxidation</topic><topic>Oxidation-reduction reaction</topic><topic>Palladium</topic><topic>Physical Chemistry</topic><topic>Platinum</topic><topic>Rhodium</topic><topic>Room temperature</topic><topic>Sodium titanate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camposeco, R.</creatorcontrib><creatorcontrib>Castillo, S.</creatorcontrib><creatorcontrib>Nava, N.</creatorcontrib><creatorcontrib>Maturano, V.</creatorcontrib><creatorcontrib>Zanella, R.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camposeco, R.</au><au>Castillo, S.</au><au>Nava, N.</au><au>Maturano, V.</au><au>Zanella, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>150</volume><issue>11</issue><spage>3342</spage><epage>3358</epage><pages>3342-3358</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>Au, Pd and Rh nanoparticles were supported on Mn/Na 2 Ti 3 O 7 alkaline titanate nanotubes by the deposition–precipitation with NaOH method. The Pt-Mn/NT alkaline titanate showed outstanding catalytic performance accomplishing complete formaldehyde oxidation at 40 °C with apparent activation energy of 27 kJ mol −1 . The following tendency was observed for catalytic activity Pt &gt; Au &gt; Rh. The characterizations revealed the importance of the noble metals in the formation of vacancies and OH groups and their ability to activate the alkaline titanate surface oxygen species, which had an impact on the formation of acid sites (Brönsted and Lewis); another key factor for formaldehyde oxidation was metal dispersion. The presence of OH species facilitated the transformation of formaldehyde adsorbed on the M-Mn/alkaline titanate nanotubes, probably through the reaction with adsorbed O species, which promoted the decomposition of formaldehyde to CO 2 at room temperature. Graphic Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-020-03254-4</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2118-5898</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1011-372X
ispartof Catalysis letters, 2020-11, Vol.150 (11), p.3342-3358
issn 1011-372X
1572-879X
language eng
recordid cdi_proquest_journals_2441910192
source SpringerLink Journals - AutoHoldings
subjects Activation energy
Aldehydes
Catalysis
Catalytic activity
Chemistry
Chemistry and Materials Science
Decomposition reactions
Formaldehyde
Gold
Industrial Chemistry/Chemical Engineering
Nanoparticles
Nanotubes
Noble metals
Organometallic Chemistry
Oxidation
Oxidation-reduction reaction
Palladium
Physical Chemistry
Platinum
Rhodium
Room temperature
Sodium titanate
title Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20Performance%20of%20Au,%20Pt%20and%20Rh%20Nanoparticles%20Supported%20on%20Mn/Alkali%20Titanate%20Nanotubes%20in%20Formaldehyde%20Oxidation%20at%20Room%20Temperature&rft.jtitle=Catalysis%20letters&rft.au=Camposeco,%20R.&rft.date=2020-11-01&rft.volume=150&rft.issue=11&rft.spage=3342&rft.epage=3358&rft.pages=3342-3358&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-020-03254-4&rft_dat=%3Cgale_proqu%3EA635334642%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441910192&rft_id=info:pmid/&rft_galeid=A635334642&rfr_iscdi=true