Quality monitoring of aluminum alloy DPMIG welding based on broadband mode decomposition and MMC-FCH

•Broadband mode decomposition is proposed for decomposing broadband signals with “sharp corners”.•An associative dictionary library consisting of typical broadband signals and narrowband signals is constructed.•ACROA is adopted for determining the optimized parameter by using the smoothness function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2020-07, Vol.158, p.107683, Article 107683
Hauptverfasser: Peng, Yanfeng, Li, Zepei, He, Kuanfang, Liu, Yanfei, Lu, Qinghua, Li, Qingxian, Liu, Liangjiang, Luo, Ruiqiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107683
container_title Measurement : journal of the International Measurement Confederation
container_volume 158
creator Peng, Yanfeng
Li, Zepei
He, Kuanfang
Liu, Yanfei
Lu, Qinghua
Li, Qingxian
Liu, Liangjiang
Luo, Ruiqiong
description •Broadband mode decomposition is proposed for decomposing broadband signals with “sharp corners”.•An associative dictionary library consisting of typical broadband signals and narrowband signals is constructed.•ACROA is adopted for determining the optimized parameter by using the smoothness function as the objective function.•BMD can effectively monitor the quality of aluminum alloy DPMIG welding combined with MMC-FCH. In double pulse metal inert gas (DPMIG) welding, the input broadband electrical signals are often affected by strong noise, which will decrease the quality monitoring accuracy. Therefore, a suitable method should be applied to extract features from the signals. However, due to the Gibbs phenomenon and the interpolation of extreme points, former methods such as variational mode decomposition (VMD) and ensemble empirical mode decomposition (EEMD) will generate unavoidable error. Therefore, broadband mode decomposition (BMD) method is newly proposed in this paper by constructing an associative dictionary library consisting of typical broadband and narrowband signals. Therefore, the drawbacks of the former methods can be avoided by searching in the dictionary. Analysis results indicate that by combining with flexible convex hulls (MMC-FCH), BMD is more accurate in extracting broadband components. Meanwhile, the mean accuracy of quality monitoring can be increased from 92.19% (VMD) and 93.75% (EEMD) to 100% by applying BMD.
doi_str_mv 10.1016/j.measurement.2020.107683
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441887520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224120302219</els_id><sourcerecordid>2441887520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-54f552cd8b02778d244023377c87e1ba9e5cfc200d4dafe3805f0514237d509e3</originalsourceid><addsrcrecordid>eNqNUEtLxDAQDqLguvofKp675tE26VGq7i7sooKCt5AmU0lpmzVplf33ttSDR08zfK9hPoSuCV4RTLLbetWCCoOHFrp-RTGdcJ4JdoIWRHAWJ4S-n6IFphmLKU3IOboIocYYZyzPFsi8DKqx_TFqXWd75233EbkqUs3Q2m5ox6Vxx-j-eb9dR9_QmIkvVQATuS4qvVOmVJ0Z3QYiA9q1Bxdsb0dygvf7In4sNpforFJNgKvfuURvjw-vxSbePa23xd0u1izJ-zhNqjSl2ogSU86FoUmCKWOca8GBlCqHVFeaYmwSoypgAqcVTklCGTcpzoEt0c2ce_Duc4DQy9oNvhtPyjGLCMFTikdVPqu0dyF4qOTB21b5oyRYTqXKWv4pVU6lyrnU0VvMXhjf-LLgZdAWOg3GetC9NM7-I-UHBMuFuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441887520</pqid></control><display><type>article</type><title>Quality monitoring of aluminum alloy DPMIG welding based on broadband mode decomposition and MMC-FCH</title><source>Access via ScienceDirect (Elsevier)</source><creator>Peng, Yanfeng ; Li, Zepei ; He, Kuanfang ; Liu, Yanfei ; Lu, Qinghua ; Li, Qingxian ; Liu, Liangjiang ; Luo, Ruiqiong</creator><creatorcontrib>Peng, Yanfeng ; Li, Zepei ; He, Kuanfang ; Liu, Yanfei ; Lu, Qinghua ; Li, Qingxian ; Liu, Liangjiang ; Luo, Ruiqiong</creatorcontrib><description>•Broadband mode decomposition is proposed for decomposing broadband signals with “sharp corners”.•An associative dictionary library consisting of typical broadband signals and narrowband signals is constructed.•ACROA is adopted for determining the optimized parameter by using the smoothness function as the objective function.•BMD can effectively monitor the quality of aluminum alloy DPMIG welding combined with MMC-FCH. In double pulse metal inert gas (DPMIG) welding, the input broadband electrical signals are often affected by strong noise, which will decrease the quality monitoring accuracy. Therefore, a suitable method should be applied to extract features from the signals. However, due to the Gibbs phenomenon and the interpolation of extreme points, former methods such as variational mode decomposition (VMD) and ensemble empirical mode decomposition (EEMD) will generate unavoidable error. Therefore, broadband mode decomposition (BMD) method is newly proposed in this paper by constructing an associative dictionary library consisting of typical broadband and narrowband signals. Therefore, the drawbacks of the former methods can be avoided by searching in the dictionary. Analysis results indicate that by combining with flexible convex hulls (MMC-FCH), BMD is more accurate in extracting broadband components. Meanwhile, the mean accuracy of quality monitoring can be increased from 92.19% (VMD) and 93.75% (EEMD) to 100% by applying BMD.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2020.107683</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Aluminum alloys ; Aluminum base alloys ; Broadband ; Broadband mode decomposition ; Convexity ; Dictionaries ; Empirical analysis ; Feature extraction ; Flexible convex hulls ; Gibbs phenomenon ; Hulls ; Interpolation ; Monitoring ; Monitoring systems ; Multiscale fuzzy entropy ; Narrowband ; Quality monitoring ; Rare gases ; Welding</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2020-07, Vol.158, p.107683, Article 107683</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jul 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-54f552cd8b02778d244023377c87e1ba9e5cfc200d4dafe3805f0514237d509e3</citedby><cites>FETCH-LOGICAL-c349t-54f552cd8b02778d244023377c87e1ba9e5cfc200d4dafe3805f0514237d509e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.measurement.2020.107683$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Peng, Yanfeng</creatorcontrib><creatorcontrib>Li, Zepei</creatorcontrib><creatorcontrib>He, Kuanfang</creatorcontrib><creatorcontrib>Liu, Yanfei</creatorcontrib><creatorcontrib>Lu, Qinghua</creatorcontrib><creatorcontrib>Li, Qingxian</creatorcontrib><creatorcontrib>Liu, Liangjiang</creatorcontrib><creatorcontrib>Luo, Ruiqiong</creatorcontrib><title>Quality monitoring of aluminum alloy DPMIG welding based on broadband mode decomposition and MMC-FCH</title><title>Measurement : journal of the International Measurement Confederation</title><description>•Broadband mode decomposition is proposed for decomposing broadband signals with “sharp corners”.•An associative dictionary library consisting of typical broadband signals and narrowband signals is constructed.•ACROA is adopted for determining the optimized parameter by using the smoothness function as the objective function.•BMD can effectively monitor the quality of aluminum alloy DPMIG welding combined with MMC-FCH. In double pulse metal inert gas (DPMIG) welding, the input broadband electrical signals are often affected by strong noise, which will decrease the quality monitoring accuracy. Therefore, a suitable method should be applied to extract features from the signals. However, due to the Gibbs phenomenon and the interpolation of extreme points, former methods such as variational mode decomposition (VMD) and ensemble empirical mode decomposition (EEMD) will generate unavoidable error. Therefore, broadband mode decomposition (BMD) method is newly proposed in this paper by constructing an associative dictionary library consisting of typical broadband and narrowband signals. Therefore, the drawbacks of the former methods can be avoided by searching in the dictionary. Analysis results indicate that by combining with flexible convex hulls (MMC-FCH), BMD is more accurate in extracting broadband components. Meanwhile, the mean accuracy of quality monitoring can be increased from 92.19% (VMD) and 93.75% (EEMD) to 100% by applying BMD.</description><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Broadband</subject><subject>Broadband mode decomposition</subject><subject>Convexity</subject><subject>Dictionaries</subject><subject>Empirical analysis</subject><subject>Feature extraction</subject><subject>Flexible convex hulls</subject><subject>Gibbs phenomenon</subject><subject>Hulls</subject><subject>Interpolation</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>Multiscale fuzzy entropy</subject><subject>Narrowband</subject><subject>Quality monitoring</subject><subject>Rare gases</subject><subject>Welding</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNUEtLxDAQDqLguvofKp675tE26VGq7i7sooKCt5AmU0lpmzVplf33ttSDR08zfK9hPoSuCV4RTLLbetWCCoOHFrp-RTGdcJ4JdoIWRHAWJ4S-n6IFphmLKU3IOboIocYYZyzPFsi8DKqx_TFqXWd75233EbkqUs3Q2m5ox6Vxx-j-eb9dR9_QmIkvVQATuS4qvVOmVJ0Z3QYiA9q1Bxdsb0dygvf7In4sNpforFJNgKvfuURvjw-vxSbePa23xd0u1izJ-zhNqjSl2ogSU86FoUmCKWOca8GBlCqHVFeaYmwSoypgAqcVTklCGTcpzoEt0c2ce_Duc4DQy9oNvhtPyjGLCMFTikdVPqu0dyF4qOTB21b5oyRYTqXKWv4pVU6lyrnU0VvMXhjf-LLgZdAWOg3GetC9NM7-I-UHBMuFuw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Peng, Yanfeng</creator><creator>Li, Zepei</creator><creator>He, Kuanfang</creator><creator>Liu, Yanfei</creator><creator>Lu, Qinghua</creator><creator>Li, Qingxian</creator><creator>Liu, Liangjiang</creator><creator>Luo, Ruiqiong</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>Quality monitoring of aluminum alloy DPMIG welding based on broadband mode decomposition and MMC-FCH</title><author>Peng, Yanfeng ; Li, Zepei ; He, Kuanfang ; Liu, Yanfei ; Lu, Qinghua ; Li, Qingxian ; Liu, Liangjiang ; Luo, Ruiqiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-54f552cd8b02778d244023377c87e1ba9e5cfc200d4dafe3805f0514237d509e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Broadband</topic><topic>Broadband mode decomposition</topic><topic>Convexity</topic><topic>Dictionaries</topic><topic>Empirical analysis</topic><topic>Feature extraction</topic><topic>Flexible convex hulls</topic><topic>Gibbs phenomenon</topic><topic>Hulls</topic><topic>Interpolation</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>Multiscale fuzzy entropy</topic><topic>Narrowband</topic><topic>Quality monitoring</topic><topic>Rare gases</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Yanfeng</creatorcontrib><creatorcontrib>Li, Zepei</creatorcontrib><creatorcontrib>He, Kuanfang</creatorcontrib><creatorcontrib>Liu, Yanfei</creatorcontrib><creatorcontrib>Lu, Qinghua</creatorcontrib><creatorcontrib>Li, Qingxian</creatorcontrib><creatorcontrib>Liu, Liangjiang</creatorcontrib><creatorcontrib>Luo, Ruiqiong</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Yanfeng</au><au>Li, Zepei</au><au>He, Kuanfang</au><au>Liu, Yanfei</au><au>Lu, Qinghua</au><au>Li, Qingxian</au><au>Liu, Liangjiang</au><au>Luo, Ruiqiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quality monitoring of aluminum alloy DPMIG welding based on broadband mode decomposition and MMC-FCH</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>158</volume><spage>107683</spage><pages>107683-</pages><artnum>107683</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•Broadband mode decomposition is proposed for decomposing broadband signals with “sharp corners”.•An associative dictionary library consisting of typical broadband signals and narrowband signals is constructed.•ACROA is adopted for determining the optimized parameter by using the smoothness function as the objective function.•BMD can effectively monitor the quality of aluminum alloy DPMIG welding combined with MMC-FCH. In double pulse metal inert gas (DPMIG) welding, the input broadband electrical signals are often affected by strong noise, which will decrease the quality monitoring accuracy. Therefore, a suitable method should be applied to extract features from the signals. However, due to the Gibbs phenomenon and the interpolation of extreme points, former methods such as variational mode decomposition (VMD) and ensemble empirical mode decomposition (EEMD) will generate unavoidable error. Therefore, broadband mode decomposition (BMD) method is newly proposed in this paper by constructing an associative dictionary library consisting of typical broadband and narrowband signals. Therefore, the drawbacks of the former methods can be avoided by searching in the dictionary. Analysis results indicate that by combining with flexible convex hulls (MMC-FCH), BMD is more accurate in extracting broadband components. Meanwhile, the mean accuracy of quality monitoring can be increased from 92.19% (VMD) and 93.75% (EEMD) to 100% by applying BMD.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2020.107683</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2020-07, Vol.158, p.107683, Article 107683
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2441887520
source Access via ScienceDirect (Elsevier)
subjects Aluminum alloys
Aluminum base alloys
Broadband
Broadband mode decomposition
Convexity
Dictionaries
Empirical analysis
Feature extraction
Flexible convex hulls
Gibbs phenomenon
Hulls
Interpolation
Monitoring
Monitoring systems
Multiscale fuzzy entropy
Narrowband
Quality monitoring
Rare gases
Welding
title Quality monitoring of aluminum alloy DPMIG welding based on broadband mode decomposition and MMC-FCH
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quality%20monitoring%20of%20aluminum%20alloy%20DPMIG%20welding%20based%20on%20broadband%20mode%20decomposition%20and%20MMC-FCH&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Peng,%20Yanfeng&rft.date=2020-07-01&rft.volume=158&rft.spage=107683&rft.pages=107683-&rft.artnum=107683&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2020.107683&rft_dat=%3Cproquest_cross%3E2441887520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441887520&rft_id=info:pmid/&rft_els_id=S0263224120302219&rfr_iscdi=true