Data-driven configuration optimization of an off-grid wind/PV/hydrogen system based on modified NSGA-II and CRITIC-TOPSIS

•A data-driven framework is proposed to optimize the sizing of a hybrid energy system.•A modified NSGA-II based on reinforcement learning is utilized to obtain Pareto set.•CRITIC-TOPSIS is used to decide the weight of objectives and select the best solution.•A optimal system with LCOE of 0.226 $/kWh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2020-07, Vol.215, p.112892, Article 112892
Hauptverfasser: Xu, Chuanbo, Ke, Yiming, Li, Yanbin, Chu, Han, Wu, Yunna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112892
container_title Energy conversion and management
container_volume 215
creator Xu, Chuanbo
Ke, Yiming
Li, Yanbin
Chu, Han
Wu, Yunna
description •A data-driven framework is proposed to optimize the sizing of a hybrid energy system.•A modified NSGA-II based on reinforcement learning is utilized to obtain Pareto set.•CRITIC-TOPSIS is used to decide the weight of objectives and select the best solution.•A optimal system with LCOE of 0.226 $/kWh, LPSP of 4.01% and PAR of 2.15% is obtained. This paper proposes a data-driven two-stage multi-criteria decision-making (MCDM) framework to investigate the optimal configuration of a stand-alone wind/PV/hydrogen system. In the first stage, a modified non-dominated sorting genetic algorithm (NSGA)-II based on reinforcement learning is utilized to determine a set of Pareto solutions. The objectives considered are to minimize the levelized cost of energy (LCOE), the loss of power supply possibility (LPSP) and the power abandonment rate (PAR), simultaneously. In the second stage, the Criteria Importance Though Intercrieria Correlation (CRITIC) method is utilized to determine the weight of the three objectives, while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) approach is employed to select the unique best solution from Pareto solutions. To verify the effectiveness, the framework is applied to the wind/PV/hydrogen system located in Aksay Kazak Autonomous County, Gansu Province, China to meet an off-grid industrial park’s load demand of 1603 kWh/day and peak load of 117.17 kW. The result states that the optimal system, which consists of 83.2 kW PV panels, 160 kW wind turbines, 20 kW fuel cells, 54 kW electrolyzers and 450 m3 hydrogen storage tanks, owns the LCOE of 0.226 $/kWh, the LPSP of 4.01% and the PAR of 2.15%.
doi_str_mv 10.1016/j.enconman.2020.112892
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441887154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890420304301</els_id><sourcerecordid>2441887154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-1b2d04eceb7eadd5f8644349b380942364ccd1e0045d8a3cb5e7b470ea74d9d23</originalsourceid><addsrcrecordid>eNqFkE9PAjEQxRujiYh-BbOJ50Lb7f67SVBxEyJE0GvTbWexxN1iu2Dw01sCnr3MTCe_9yZ9CN1SMqCEpsP1AFpl20a2A0ZYWFKWF-wM9WieFZgxlp2jHqFFivOC8Et05f2aEBInJO2h_YPsJNbO7KCNgkttVlsnO2PbyG4605if06OO5KHWeOWMjr5Nq4fz9-HHXju7ClK_9x00USU96CjwjdWmNmF-WUxGuCyDWkfj13JZjvFyNl-Ui2t0UctPDzen3kdvT4_L8TOezibleDTFipO0w7RimnBQUGUgtU7qPOU85kUV56TgLE65UpoCITzRuYxVlUBW8YyAzLguNIv76O7ou3H2awu-E2u7dW04KRjnNM8zmvBApUdKOeu9g1psnGmk2wtKxCFmsRZ_MYtDzOIYcxDeH4UQ_rAz4IRXJpCgjQPVCW3Nfxa_sgaJPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441887154</pqid></control><display><type>article</type><title>Data-driven configuration optimization of an off-grid wind/PV/hydrogen system based on modified NSGA-II and CRITIC-TOPSIS</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xu, Chuanbo ; Ke, Yiming ; Li, Yanbin ; Chu, Han ; Wu, Yunna</creator><creatorcontrib>Xu, Chuanbo ; Ke, Yiming ; Li, Yanbin ; Chu, Han ; Wu, Yunna</creatorcontrib><description>•A data-driven framework is proposed to optimize the sizing of a hybrid energy system.•A modified NSGA-II based on reinforcement learning is utilized to obtain Pareto set.•CRITIC-TOPSIS is used to decide the weight of objectives and select the best solution.•A optimal system with LCOE of 0.226 $/kWh, LPSP of 4.01% and PAR of 2.15% is obtained. This paper proposes a data-driven two-stage multi-criteria decision-making (MCDM) framework to investigate the optimal configuration of a stand-alone wind/PV/hydrogen system. In the first stage, a modified non-dominated sorting genetic algorithm (NSGA)-II based on reinforcement learning is utilized to determine a set of Pareto solutions. The objectives considered are to minimize the levelized cost of energy (LCOE), the loss of power supply possibility (LPSP) and the power abandonment rate (PAR), simultaneously. In the second stage, the Criteria Importance Though Intercrieria Correlation (CRITIC) method is utilized to determine the weight of the three objectives, while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) approach is employed to select the unique best solution from Pareto solutions. To verify the effectiveness, the framework is applied to the wind/PV/hydrogen system located in Aksay Kazak Autonomous County, Gansu Province, China to meet an off-grid industrial park’s load demand of 1603 kWh/day and peak load of 117.17 kW. The result states that the optimal system, which consists of 83.2 kW PV panels, 160 kW wind turbines, 20 kW fuel cells, 54 kW electrolyzers and 450 m3 hydrogen storage tanks, owns the LCOE of 0.226 $/kWh, the LPSP of 4.01% and the PAR of 2.15%.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2020.112892</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Abandonment ; Configuration optimization ; Configurations ; CRITIC ; Decision making ; Electricity consumption ; Electrolytic cells ; Energy conservation ; Fuel cells ; Fuel tanks ; Fuel technology ; Genetic algorithms ; Hydrogen ; Hydrogen storage ; Industrial parks ; Machine learning ; Multiple criterion ; NSGA-II ; Optimization ; Peak load ; Photovoltaic cells ; Reinforcement learning ; Sorting algorithms ; Storage tanks ; TOPSIS ; Turbines ; Wind power ; Wind turbines ; Wind/PV/hydrogen system</subject><ispartof>Energy conversion and management, 2020-07, Vol.215, p.112892, Article 112892</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jul 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-1b2d04eceb7eadd5f8644349b380942364ccd1e0045d8a3cb5e7b470ea74d9d23</citedby><cites>FETCH-LOGICAL-c406t-1b2d04eceb7eadd5f8644349b380942364ccd1e0045d8a3cb5e7b470ea74d9d23</cites><orcidid>0000-0001-6226-4798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enconman.2020.112892$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Xu, Chuanbo</creatorcontrib><creatorcontrib>Ke, Yiming</creatorcontrib><creatorcontrib>Li, Yanbin</creatorcontrib><creatorcontrib>Chu, Han</creatorcontrib><creatorcontrib>Wu, Yunna</creatorcontrib><title>Data-driven configuration optimization of an off-grid wind/PV/hydrogen system based on modified NSGA-II and CRITIC-TOPSIS</title><title>Energy conversion and management</title><description>•A data-driven framework is proposed to optimize the sizing of a hybrid energy system.•A modified NSGA-II based on reinforcement learning is utilized to obtain Pareto set.•CRITIC-TOPSIS is used to decide the weight of objectives and select the best solution.•A optimal system with LCOE of 0.226 $/kWh, LPSP of 4.01% and PAR of 2.15% is obtained. This paper proposes a data-driven two-stage multi-criteria decision-making (MCDM) framework to investigate the optimal configuration of a stand-alone wind/PV/hydrogen system. In the first stage, a modified non-dominated sorting genetic algorithm (NSGA)-II based on reinforcement learning is utilized to determine a set of Pareto solutions. The objectives considered are to minimize the levelized cost of energy (LCOE), the loss of power supply possibility (LPSP) and the power abandonment rate (PAR), simultaneously. In the second stage, the Criteria Importance Though Intercrieria Correlation (CRITIC) method is utilized to determine the weight of the three objectives, while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) approach is employed to select the unique best solution from Pareto solutions. To verify the effectiveness, the framework is applied to the wind/PV/hydrogen system located in Aksay Kazak Autonomous County, Gansu Province, China to meet an off-grid industrial park’s load demand of 1603 kWh/day and peak load of 117.17 kW. The result states that the optimal system, which consists of 83.2 kW PV panels, 160 kW wind turbines, 20 kW fuel cells, 54 kW electrolyzers and 450 m3 hydrogen storage tanks, owns the LCOE of 0.226 $/kWh, the LPSP of 4.01% and the PAR of 2.15%.</description><subject>Abandonment</subject><subject>Configuration optimization</subject><subject>Configurations</subject><subject>CRITIC</subject><subject>Decision making</subject><subject>Electricity consumption</subject><subject>Electrolytic cells</subject><subject>Energy conservation</subject><subject>Fuel cells</subject><subject>Fuel tanks</subject><subject>Fuel technology</subject><subject>Genetic algorithms</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Industrial parks</subject><subject>Machine learning</subject><subject>Multiple criterion</subject><subject>NSGA-II</subject><subject>Optimization</subject><subject>Peak load</subject><subject>Photovoltaic cells</subject><subject>Reinforcement learning</subject><subject>Sorting algorithms</subject><subject>Storage tanks</subject><subject>TOPSIS</subject><subject>Turbines</subject><subject>Wind power</subject><subject>Wind turbines</subject><subject>Wind/PV/hydrogen system</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PAjEQxRujiYh-BbOJ50Lb7f67SVBxEyJE0GvTbWexxN1iu2Dw01sCnr3MTCe_9yZ9CN1SMqCEpsP1AFpl20a2A0ZYWFKWF-wM9WieFZgxlp2jHqFFivOC8Et05f2aEBInJO2h_YPsJNbO7KCNgkttVlsnO2PbyG4605if06OO5KHWeOWMjr5Nq4fz9-HHXju7ClK_9x00USU96CjwjdWmNmF-WUxGuCyDWkfj13JZjvFyNl-Ui2t0UctPDzen3kdvT4_L8TOezibleDTFipO0w7RimnBQUGUgtU7qPOU85kUV56TgLE65UpoCITzRuYxVlUBW8YyAzLguNIv76O7ou3H2awu-E2u7dW04KRjnNM8zmvBApUdKOeu9g1psnGmk2wtKxCFmsRZ_MYtDzOIYcxDeH4UQ_rAz4IRXJpCgjQPVCW3Nfxa_sgaJPw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Xu, Chuanbo</creator><creator>Ke, Yiming</creator><creator>Li, Yanbin</creator><creator>Chu, Han</creator><creator>Wu, Yunna</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6226-4798</orcidid></search><sort><creationdate>20200701</creationdate><title>Data-driven configuration optimization of an off-grid wind/PV/hydrogen system based on modified NSGA-II and CRITIC-TOPSIS</title><author>Xu, Chuanbo ; Ke, Yiming ; Li, Yanbin ; Chu, Han ; Wu, Yunna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-1b2d04eceb7eadd5f8644349b380942364ccd1e0045d8a3cb5e7b470ea74d9d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abandonment</topic><topic>Configuration optimization</topic><topic>Configurations</topic><topic>CRITIC</topic><topic>Decision making</topic><topic>Electricity consumption</topic><topic>Electrolytic cells</topic><topic>Energy conservation</topic><topic>Fuel cells</topic><topic>Fuel tanks</topic><topic>Fuel technology</topic><topic>Genetic algorithms</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Industrial parks</topic><topic>Machine learning</topic><topic>Multiple criterion</topic><topic>NSGA-II</topic><topic>Optimization</topic><topic>Peak load</topic><topic>Photovoltaic cells</topic><topic>Reinforcement learning</topic><topic>Sorting algorithms</topic><topic>Storage tanks</topic><topic>TOPSIS</topic><topic>Turbines</topic><topic>Wind power</topic><topic>Wind turbines</topic><topic>Wind/PV/hydrogen system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chuanbo</creatorcontrib><creatorcontrib>Ke, Yiming</creatorcontrib><creatorcontrib>Li, Yanbin</creatorcontrib><creatorcontrib>Chu, Han</creatorcontrib><creatorcontrib>Wu, Yunna</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Chuanbo</au><au>Ke, Yiming</au><au>Li, Yanbin</au><au>Chu, Han</au><au>Wu, Yunna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven configuration optimization of an off-grid wind/PV/hydrogen system based on modified NSGA-II and CRITIC-TOPSIS</atitle><jtitle>Energy conversion and management</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>215</volume><spage>112892</spage><pages>112892-</pages><artnum>112892</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•A data-driven framework is proposed to optimize the sizing of a hybrid energy system.•A modified NSGA-II based on reinforcement learning is utilized to obtain Pareto set.•CRITIC-TOPSIS is used to decide the weight of objectives and select the best solution.•A optimal system with LCOE of 0.226 $/kWh, LPSP of 4.01% and PAR of 2.15% is obtained. This paper proposes a data-driven two-stage multi-criteria decision-making (MCDM) framework to investigate the optimal configuration of a stand-alone wind/PV/hydrogen system. In the first stage, a modified non-dominated sorting genetic algorithm (NSGA)-II based on reinforcement learning is utilized to determine a set of Pareto solutions. The objectives considered are to minimize the levelized cost of energy (LCOE), the loss of power supply possibility (LPSP) and the power abandonment rate (PAR), simultaneously. In the second stage, the Criteria Importance Though Intercrieria Correlation (CRITIC) method is utilized to determine the weight of the three objectives, while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) approach is employed to select the unique best solution from Pareto solutions. To verify the effectiveness, the framework is applied to the wind/PV/hydrogen system located in Aksay Kazak Autonomous County, Gansu Province, China to meet an off-grid industrial park’s load demand of 1603 kWh/day and peak load of 117.17 kW. The result states that the optimal system, which consists of 83.2 kW PV panels, 160 kW wind turbines, 20 kW fuel cells, 54 kW electrolyzers and 450 m3 hydrogen storage tanks, owns the LCOE of 0.226 $/kWh, the LPSP of 4.01% and the PAR of 2.15%.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2020.112892</doi><orcidid>https://orcid.org/0000-0001-6226-4798</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2020-07, Vol.215, p.112892, Article 112892
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2441887154
source Access via ScienceDirect (Elsevier)
subjects Abandonment
Configuration optimization
Configurations
CRITIC
Decision making
Electricity consumption
Electrolytic cells
Energy conservation
Fuel cells
Fuel tanks
Fuel technology
Genetic algorithms
Hydrogen
Hydrogen storage
Industrial parks
Machine learning
Multiple criterion
NSGA-II
Optimization
Peak load
Photovoltaic cells
Reinforcement learning
Sorting algorithms
Storage tanks
TOPSIS
Turbines
Wind power
Wind turbines
Wind/PV/hydrogen system
title Data-driven configuration optimization of an off-grid wind/PV/hydrogen system based on modified NSGA-II and CRITIC-TOPSIS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20configuration%20optimization%20of%20an%20off-grid%20wind/PV/hydrogen%20system%20based%20on%20modified%20NSGA-II%20and%20CRITIC-TOPSIS&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Xu,%20Chuanbo&rft.date=2020-07-01&rft.volume=215&rft.spage=112892&rft.pages=112892-&rft.artnum=112892&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2020.112892&rft_dat=%3Cproquest_cross%3E2441887154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441887154&rft_id=info:pmid/&rft_els_id=S0196890420304301&rfr_iscdi=true