Multi-scale simulation study on the hygrothermal behavior of closed-cell thermal insulation
Closed-cell thermal insulation is one typical type of thermal insulation applied in the engineering field. However, it is observed that moisture may gradually accumulate in the insulation and highly decrease the system thermal behavior. The hygrothermal behavior depends on the mesoscopic structure a...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2020-04, Vol.196, p.117142, Article 117142 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 117142 |
container_title | Energy (Oxford) |
container_volume | 196 |
creator | Cai, Shanshan Guo, Haijin Zhang, Boxiong Xu, Guowen Li, Kun Xia, Lizhi |
description | Closed-cell thermal insulation is one typical type of thermal insulation applied in the engineering field. However, it is observed that moisture may gradually accumulate in the insulation and highly decrease the system thermal behavior. The hygrothermal behavior depends on the mesoscopic structure and moisture distribution of the closed-cell materials. In order to investigate the impact of mesoscopic structure on the hygrothermal behavior of closed-cell insulation, a multi-scale simulation study is reported in this work. An improved random reconstruction method is first proposed to describe the structure of closed-cell insulation, and then a multi-scale thermal model is proposed to study the impact of mesoscopic structure at both mesoscopic and macroscopic scales. The trend of the results derived from the proposed multi-scale model is consistent with the experimental results, and the relevant error is lower than 10% when the degree of saturation is low. Based on the proposed models, it is found that the mesoscopic structures have significant impacts on the hygrothermal behavior of closed-cell thermal insulation at multiple scales. Both the porosity related parameters and other structure parameters are considered and discussed in detail, with sensitivity analysis provided at the end. |
doi_str_mv | 10.1016/j.energy.2020.117142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441886879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544220302498</els_id><sourcerecordid>2441886879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-26833f5453010ec93ce9b6456f9047f46210eb109fd42909a7fa321279434db73</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIfcIjEOcWvOPEFCVW8pCIucOJgOc66dZXGxU4q5e9xlXLltKPZmVntIHRL8IJgIu63C-ggrMcFxTRRpCScnqEZqUqWi7IqztEMM4HzgnN6ia5i3GKMi0rKGfp-H9re5dHoFrLodkOre-e7LPZDM2YJ9BvINuM6-ATCTrdZDRt9cD5k3mam9RGa3EDbZn9718VTyDW6sLqNcHOac_T1_PS5fM1XHy9vy8dVbhjjfU5FxZgteMEwwWAkMyBrwQthJeal5YImuiZY2oZTiaUurWaU0FJyxpu6ZHN0N-Xug_8ZIPZq64fQpZOKck6qSlSlTCo-qUzwMQawah_cTodREayONaqtmmpUxxrVVGOyPUw2SB8cHAQVjYPOQOMCmF413v0f8AtbXn0e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441886879</pqid></control><display><type>article</type><title>Multi-scale simulation study on the hygrothermal behavior of closed-cell thermal insulation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cai, Shanshan ; Guo, Haijin ; Zhang, Boxiong ; Xu, Guowen ; Li, Kun ; Xia, Lizhi</creator><creatorcontrib>Cai, Shanshan ; Guo, Haijin ; Zhang, Boxiong ; Xu, Guowen ; Li, Kun ; Xia, Lizhi</creatorcontrib><description>Closed-cell thermal insulation is one typical type of thermal insulation applied in the engineering field. However, it is observed that moisture may gradually accumulate in the insulation and highly decrease the system thermal behavior. The hygrothermal behavior depends on the mesoscopic structure and moisture distribution of the closed-cell materials. In order to investigate the impact of mesoscopic structure on the hygrothermal behavior of closed-cell insulation, a multi-scale simulation study is reported in this work. An improved random reconstruction method is first proposed to describe the structure of closed-cell insulation, and then a multi-scale thermal model is proposed to study the impact of mesoscopic structure at both mesoscopic and macroscopic scales. The trend of the results derived from the proposed multi-scale model is consistent with the experimental results, and the relevant error is lower than 10% when the degree of saturation is low. Based on the proposed models, it is found that the mesoscopic structures have significant impacts on the hygrothermal behavior of closed-cell thermal insulation at multiple scales. Both the porosity related parameters and other structure parameters are considered and discussed in detail, with sensitivity analysis provided at the end.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2020.117142</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computer simulation ; Hygrothermal behavior ; Insulation ; Lattice Boltzmann method ; Mathematical models ; Mesoscopic structure ; Moisture ; Multi-scale simulation ; Multiscale analysis ; Parameter sensitivity ; Porosity ; Random reconstruction ; Scale models ; Sensitivity analysis ; Thermal analysis ; Thermal insulation ; Thermodynamic properties</subject><ispartof>Energy (Oxford), 2020-04, Vol.196, p.117142, Article 117142</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-26833f5453010ec93ce9b6456f9047f46210eb109fd42909a7fa321279434db73</citedby><cites>FETCH-LOGICAL-c334t-26833f5453010ec93ce9b6456f9047f46210eb109fd42909a7fa321279434db73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2020.117142$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Cai, Shanshan</creatorcontrib><creatorcontrib>Guo, Haijin</creatorcontrib><creatorcontrib>Zhang, Boxiong</creatorcontrib><creatorcontrib>Xu, Guowen</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Xia, Lizhi</creatorcontrib><title>Multi-scale simulation study on the hygrothermal behavior of closed-cell thermal insulation</title><title>Energy (Oxford)</title><description>Closed-cell thermal insulation is one typical type of thermal insulation applied in the engineering field. However, it is observed that moisture may gradually accumulate in the insulation and highly decrease the system thermal behavior. The hygrothermal behavior depends on the mesoscopic structure and moisture distribution of the closed-cell materials. In order to investigate the impact of mesoscopic structure on the hygrothermal behavior of closed-cell insulation, a multi-scale simulation study is reported in this work. An improved random reconstruction method is first proposed to describe the structure of closed-cell insulation, and then a multi-scale thermal model is proposed to study the impact of mesoscopic structure at both mesoscopic and macroscopic scales. The trend of the results derived from the proposed multi-scale model is consistent with the experimental results, and the relevant error is lower than 10% when the degree of saturation is low. Based on the proposed models, it is found that the mesoscopic structures have significant impacts on the hygrothermal behavior of closed-cell thermal insulation at multiple scales. Both the porosity related parameters and other structure parameters are considered and discussed in detail, with sensitivity analysis provided at the end.</description><subject>Computer simulation</subject><subject>Hygrothermal behavior</subject><subject>Insulation</subject><subject>Lattice Boltzmann method</subject><subject>Mathematical models</subject><subject>Mesoscopic structure</subject><subject>Moisture</subject><subject>Multi-scale simulation</subject><subject>Multiscale analysis</subject><subject>Parameter sensitivity</subject><subject>Porosity</subject><subject>Random reconstruction</subject><subject>Scale models</subject><subject>Sensitivity analysis</subject><subject>Thermal analysis</subject><subject>Thermal insulation</subject><subject>Thermodynamic properties</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIfcIjEOcWvOPEFCVW8pCIucOJgOc66dZXGxU4q5e9xlXLltKPZmVntIHRL8IJgIu63C-ggrMcFxTRRpCScnqEZqUqWi7IqztEMM4HzgnN6ia5i3GKMi0rKGfp-H9re5dHoFrLodkOre-e7LPZDM2YJ9BvINuM6-ATCTrdZDRt9cD5k3mam9RGa3EDbZn9718VTyDW6sLqNcHOac_T1_PS5fM1XHy9vy8dVbhjjfU5FxZgteMEwwWAkMyBrwQthJeal5YImuiZY2oZTiaUurWaU0FJyxpu6ZHN0N-Xug_8ZIPZq64fQpZOKck6qSlSlTCo-qUzwMQawah_cTodREayONaqtmmpUxxrVVGOyPUw2SB8cHAQVjYPOQOMCmF413v0f8AtbXn0e</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Cai, Shanshan</creator><creator>Guo, Haijin</creator><creator>Zhang, Boxiong</creator><creator>Xu, Guowen</creator><creator>Li, Kun</creator><creator>Xia, Lizhi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200401</creationdate><title>Multi-scale simulation study on the hygrothermal behavior of closed-cell thermal insulation</title><author>Cai, Shanshan ; Guo, Haijin ; Zhang, Boxiong ; Xu, Guowen ; Li, Kun ; Xia, Lizhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-26833f5453010ec93ce9b6456f9047f46210eb109fd42909a7fa321279434db73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Hygrothermal behavior</topic><topic>Insulation</topic><topic>Lattice Boltzmann method</topic><topic>Mathematical models</topic><topic>Mesoscopic structure</topic><topic>Moisture</topic><topic>Multi-scale simulation</topic><topic>Multiscale analysis</topic><topic>Parameter sensitivity</topic><topic>Porosity</topic><topic>Random reconstruction</topic><topic>Scale models</topic><topic>Sensitivity analysis</topic><topic>Thermal analysis</topic><topic>Thermal insulation</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Shanshan</creatorcontrib><creatorcontrib>Guo, Haijin</creatorcontrib><creatorcontrib>Zhang, Boxiong</creatorcontrib><creatorcontrib>Xu, Guowen</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Xia, Lizhi</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Shanshan</au><au>Guo, Haijin</au><au>Zhang, Boxiong</au><au>Xu, Guowen</au><au>Li, Kun</au><au>Xia, Lizhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale simulation study on the hygrothermal behavior of closed-cell thermal insulation</atitle><jtitle>Energy (Oxford)</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>196</volume><spage>117142</spage><pages>117142-</pages><artnum>117142</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>Closed-cell thermal insulation is one typical type of thermal insulation applied in the engineering field. However, it is observed that moisture may gradually accumulate in the insulation and highly decrease the system thermal behavior. The hygrothermal behavior depends on the mesoscopic structure and moisture distribution of the closed-cell materials. In order to investigate the impact of mesoscopic structure on the hygrothermal behavior of closed-cell insulation, a multi-scale simulation study is reported in this work. An improved random reconstruction method is first proposed to describe the structure of closed-cell insulation, and then a multi-scale thermal model is proposed to study the impact of mesoscopic structure at both mesoscopic and macroscopic scales. The trend of the results derived from the proposed multi-scale model is consistent with the experimental results, and the relevant error is lower than 10% when the degree of saturation is low. Based on the proposed models, it is found that the mesoscopic structures have significant impacts on the hygrothermal behavior of closed-cell thermal insulation at multiple scales. Both the porosity related parameters and other structure parameters are considered and discussed in detail, with sensitivity analysis provided at the end.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2020.117142</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2020-04, Vol.196, p.117142, Article 117142 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2441886879 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Computer simulation Hygrothermal behavior Insulation Lattice Boltzmann method Mathematical models Mesoscopic structure Moisture Multi-scale simulation Multiscale analysis Parameter sensitivity Porosity Random reconstruction Scale models Sensitivity analysis Thermal analysis Thermal insulation Thermodynamic properties |
title | Multi-scale simulation study on the hygrothermal behavior of closed-cell thermal insulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20simulation%20study%20on%20the%20hygrothermal%20behavior%20of%20closed-cell%20thermal%20insulation&rft.jtitle=Energy%20(Oxford)&rft.au=Cai,%20Shanshan&rft.date=2020-04-01&rft.volume=196&rft.spage=117142&rft.pages=117142-&rft.artnum=117142&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2020.117142&rft_dat=%3Cproquest_cross%3E2441886879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441886879&rft_id=info:pmid/&rft_els_id=S0360544220302498&rfr_iscdi=true |