Multi-scale simulation study on the hygrothermal behavior of closed-cell thermal insulation

Closed-cell thermal insulation is one typical type of thermal insulation applied in the engineering field. However, it is observed that moisture may gradually accumulate in the insulation and highly decrease the system thermal behavior. The hygrothermal behavior depends on the mesoscopic structure a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2020-04, Vol.196, p.117142, Article 117142
Hauptverfasser: Cai, Shanshan, Guo, Haijin, Zhang, Boxiong, Xu, Guowen, Li, Kun, Xia, Lizhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 117142
container_title Energy (Oxford)
container_volume 196
creator Cai, Shanshan
Guo, Haijin
Zhang, Boxiong
Xu, Guowen
Li, Kun
Xia, Lizhi
description Closed-cell thermal insulation is one typical type of thermal insulation applied in the engineering field. However, it is observed that moisture may gradually accumulate in the insulation and highly decrease the system thermal behavior. The hygrothermal behavior depends on the mesoscopic structure and moisture distribution of the closed-cell materials. In order to investigate the impact of mesoscopic structure on the hygrothermal behavior of closed-cell insulation, a multi-scale simulation study is reported in this work. An improved random reconstruction method is first proposed to describe the structure of closed-cell insulation, and then a multi-scale thermal model is proposed to study the impact of mesoscopic structure at both mesoscopic and macroscopic scales. The trend of the results derived from the proposed multi-scale model is consistent with the experimental results, and the relevant error is lower than 10% when the degree of saturation is low. Based on the proposed models, it is found that the mesoscopic structures have significant impacts on the hygrothermal behavior of closed-cell thermal insulation at multiple scales. Both the porosity related parameters and other structure parameters are considered and discussed in detail, with sensitivity analysis provided at the end.
doi_str_mv 10.1016/j.energy.2020.117142
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441886879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544220302498</els_id><sourcerecordid>2441886879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-26833f5453010ec93ce9b6456f9047f46210eb109fd42909a7fa321279434db73</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIfcIjEOcWvOPEFCVW8pCIucOJgOc66dZXGxU4q5e9xlXLltKPZmVntIHRL8IJgIu63C-ggrMcFxTRRpCScnqEZqUqWi7IqztEMM4HzgnN6ia5i3GKMi0rKGfp-H9re5dHoFrLodkOre-e7LPZDM2YJ9BvINuM6-ATCTrdZDRt9cD5k3mam9RGa3EDbZn9718VTyDW6sLqNcHOac_T1_PS5fM1XHy9vy8dVbhjjfU5FxZgteMEwwWAkMyBrwQthJeal5YImuiZY2oZTiaUurWaU0FJyxpu6ZHN0N-Xug_8ZIPZq64fQpZOKck6qSlSlTCo-qUzwMQawah_cTodREayONaqtmmpUxxrVVGOyPUw2SB8cHAQVjYPOQOMCmF413v0f8AtbXn0e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441886879</pqid></control><display><type>article</type><title>Multi-scale simulation study on the hygrothermal behavior of closed-cell thermal insulation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cai, Shanshan ; Guo, Haijin ; Zhang, Boxiong ; Xu, Guowen ; Li, Kun ; Xia, Lizhi</creator><creatorcontrib>Cai, Shanshan ; Guo, Haijin ; Zhang, Boxiong ; Xu, Guowen ; Li, Kun ; Xia, Lizhi</creatorcontrib><description>Closed-cell thermal insulation is one typical type of thermal insulation applied in the engineering field. However, it is observed that moisture may gradually accumulate in the insulation and highly decrease the system thermal behavior. The hygrothermal behavior depends on the mesoscopic structure and moisture distribution of the closed-cell materials. In order to investigate the impact of mesoscopic structure on the hygrothermal behavior of closed-cell insulation, a multi-scale simulation study is reported in this work. An improved random reconstruction method is first proposed to describe the structure of closed-cell insulation, and then a multi-scale thermal model is proposed to study the impact of mesoscopic structure at both mesoscopic and macroscopic scales. The trend of the results derived from the proposed multi-scale model is consistent with the experimental results, and the relevant error is lower than 10% when the degree of saturation is low. Based on the proposed models, it is found that the mesoscopic structures have significant impacts on the hygrothermal behavior of closed-cell thermal insulation at multiple scales. Both the porosity related parameters and other structure parameters are considered and discussed in detail, with sensitivity analysis provided at the end.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2020.117142</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computer simulation ; Hygrothermal behavior ; Insulation ; Lattice Boltzmann method ; Mathematical models ; Mesoscopic structure ; Moisture ; Multi-scale simulation ; Multiscale analysis ; Parameter sensitivity ; Porosity ; Random reconstruction ; Scale models ; Sensitivity analysis ; Thermal analysis ; Thermal insulation ; Thermodynamic properties</subject><ispartof>Energy (Oxford), 2020-04, Vol.196, p.117142, Article 117142</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-26833f5453010ec93ce9b6456f9047f46210eb109fd42909a7fa321279434db73</citedby><cites>FETCH-LOGICAL-c334t-26833f5453010ec93ce9b6456f9047f46210eb109fd42909a7fa321279434db73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2020.117142$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Cai, Shanshan</creatorcontrib><creatorcontrib>Guo, Haijin</creatorcontrib><creatorcontrib>Zhang, Boxiong</creatorcontrib><creatorcontrib>Xu, Guowen</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Xia, Lizhi</creatorcontrib><title>Multi-scale simulation study on the hygrothermal behavior of closed-cell thermal insulation</title><title>Energy (Oxford)</title><description>Closed-cell thermal insulation is one typical type of thermal insulation applied in the engineering field. However, it is observed that moisture may gradually accumulate in the insulation and highly decrease the system thermal behavior. The hygrothermal behavior depends on the mesoscopic structure and moisture distribution of the closed-cell materials. In order to investigate the impact of mesoscopic structure on the hygrothermal behavior of closed-cell insulation, a multi-scale simulation study is reported in this work. An improved random reconstruction method is first proposed to describe the structure of closed-cell insulation, and then a multi-scale thermal model is proposed to study the impact of mesoscopic structure at both mesoscopic and macroscopic scales. The trend of the results derived from the proposed multi-scale model is consistent with the experimental results, and the relevant error is lower than 10% when the degree of saturation is low. Based on the proposed models, it is found that the mesoscopic structures have significant impacts on the hygrothermal behavior of closed-cell thermal insulation at multiple scales. Both the porosity related parameters and other structure parameters are considered and discussed in detail, with sensitivity analysis provided at the end.</description><subject>Computer simulation</subject><subject>Hygrothermal behavior</subject><subject>Insulation</subject><subject>Lattice Boltzmann method</subject><subject>Mathematical models</subject><subject>Mesoscopic structure</subject><subject>Moisture</subject><subject>Multi-scale simulation</subject><subject>Multiscale analysis</subject><subject>Parameter sensitivity</subject><subject>Porosity</subject><subject>Random reconstruction</subject><subject>Scale models</subject><subject>Sensitivity analysis</subject><subject>Thermal analysis</subject><subject>Thermal insulation</subject><subject>Thermodynamic properties</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIfcIjEOcWvOPEFCVW8pCIucOJgOc66dZXGxU4q5e9xlXLltKPZmVntIHRL8IJgIu63C-ggrMcFxTRRpCScnqEZqUqWi7IqztEMM4HzgnN6ia5i3GKMi0rKGfp-H9re5dHoFrLodkOre-e7LPZDM2YJ9BvINuM6-ATCTrdZDRt9cD5k3mam9RGa3EDbZn9718VTyDW6sLqNcHOac_T1_PS5fM1XHy9vy8dVbhjjfU5FxZgteMEwwWAkMyBrwQthJeal5YImuiZY2oZTiaUurWaU0FJyxpu6ZHN0N-Xug_8ZIPZq64fQpZOKck6qSlSlTCo-qUzwMQawah_cTodREayONaqtmmpUxxrVVGOyPUw2SB8cHAQVjYPOQOMCmF413v0f8AtbXn0e</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Cai, Shanshan</creator><creator>Guo, Haijin</creator><creator>Zhang, Boxiong</creator><creator>Xu, Guowen</creator><creator>Li, Kun</creator><creator>Xia, Lizhi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200401</creationdate><title>Multi-scale simulation study on the hygrothermal behavior of closed-cell thermal insulation</title><author>Cai, Shanshan ; Guo, Haijin ; Zhang, Boxiong ; Xu, Guowen ; Li, Kun ; Xia, Lizhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-26833f5453010ec93ce9b6456f9047f46210eb109fd42909a7fa321279434db73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Hygrothermal behavior</topic><topic>Insulation</topic><topic>Lattice Boltzmann method</topic><topic>Mathematical models</topic><topic>Mesoscopic structure</topic><topic>Moisture</topic><topic>Multi-scale simulation</topic><topic>Multiscale analysis</topic><topic>Parameter sensitivity</topic><topic>Porosity</topic><topic>Random reconstruction</topic><topic>Scale models</topic><topic>Sensitivity analysis</topic><topic>Thermal analysis</topic><topic>Thermal insulation</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Shanshan</creatorcontrib><creatorcontrib>Guo, Haijin</creatorcontrib><creatorcontrib>Zhang, Boxiong</creatorcontrib><creatorcontrib>Xu, Guowen</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Xia, Lizhi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Shanshan</au><au>Guo, Haijin</au><au>Zhang, Boxiong</au><au>Xu, Guowen</au><au>Li, Kun</au><au>Xia, Lizhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale simulation study on the hygrothermal behavior of closed-cell thermal insulation</atitle><jtitle>Energy (Oxford)</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>196</volume><spage>117142</spage><pages>117142-</pages><artnum>117142</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>Closed-cell thermal insulation is one typical type of thermal insulation applied in the engineering field. However, it is observed that moisture may gradually accumulate in the insulation and highly decrease the system thermal behavior. The hygrothermal behavior depends on the mesoscopic structure and moisture distribution of the closed-cell materials. In order to investigate the impact of mesoscopic structure on the hygrothermal behavior of closed-cell insulation, a multi-scale simulation study is reported in this work. An improved random reconstruction method is first proposed to describe the structure of closed-cell insulation, and then a multi-scale thermal model is proposed to study the impact of mesoscopic structure at both mesoscopic and macroscopic scales. The trend of the results derived from the proposed multi-scale model is consistent with the experimental results, and the relevant error is lower than 10% when the degree of saturation is low. Based on the proposed models, it is found that the mesoscopic structures have significant impacts on the hygrothermal behavior of closed-cell thermal insulation at multiple scales. Both the porosity related parameters and other structure parameters are considered and discussed in detail, with sensitivity analysis provided at the end.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2020.117142</doi></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2020-04, Vol.196, p.117142, Article 117142
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2441886879
source ScienceDirect Journals (5 years ago - present)
subjects Computer simulation
Hygrothermal behavior
Insulation
Lattice Boltzmann method
Mathematical models
Mesoscopic structure
Moisture
Multi-scale simulation
Multiscale analysis
Parameter sensitivity
Porosity
Random reconstruction
Scale models
Sensitivity analysis
Thermal analysis
Thermal insulation
Thermodynamic properties
title Multi-scale simulation study on the hygrothermal behavior of closed-cell thermal insulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20simulation%20study%20on%20the%20hygrothermal%20behavior%20of%20closed-cell%20thermal%20insulation&rft.jtitle=Energy%20(Oxford)&rft.au=Cai,%20Shanshan&rft.date=2020-04-01&rft.volume=196&rft.spage=117142&rft.pages=117142-&rft.artnum=117142&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2020.117142&rft_dat=%3Cproquest_cross%3E2441886879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441886879&rft_id=info:pmid/&rft_els_id=S0360544220302498&rfr_iscdi=true