Enhancing image processing architecture using deep learning for embedded vision systems

In recent years, the success and capabilities of embedded vision have showed up in embedded applications. The embedding of vision into electronic devices such as embedded medical applications is being driven by the availability of high-performance processors, integrating with deep learning algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microprocessors and microsystems 2020-07, Vol.76, p.103094, Article 103094
Hauptverfasser: Udendhran, R., Balamurugan, M., Suresh, A., Varatharajan, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103094
container_title Microprocessors and microsystems
container_volume 76
creator Udendhran, R.
Balamurugan, M.
Suresh, A.
Varatharajan, R.
description In recent years, the success and capabilities of embedded vision have showed up in embedded applications. The embedding of vision into electronic devices such as embedded medical applications is being driven by the availability of high-performance processors, integrating with deep learning algorithms, as well as advances in image processing technology. But, including image processing in embedded vision systems need huge amount of computational capabilities even to process a single image to detect an object and it's extremely challenging to implement in embedded systems. Implementing deep learning algorithms and testing it on a task specific data set could provide enhanced results. In this paper, an approach for enhancing image processing architecture using deep learning for embedded vision systems is proposed and analyzed. Implementing deep learning algorithms and testing it on embedded vision yielded effective results.
doi_str_mv 10.1016/j.micpro.2020.103094
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441886836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141933120301642</els_id><sourcerecordid>2441886836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-12cd09c65c587bd1c100bcfdca4faf5e0c937631ec9849594be7e6ec941fb6bc3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw8Bz12TJk2biyDL-gcWvCgeQzuZ7qZs2zVpF_z2ptazp2Eeb97M_Ai55WzFGVf3zap1cPT9KmXpJAmm5RlZ8CJPEy2FOicLxiVPtBD8klyF0DDGMqbSBfncdPuyA9ftqGvLHdIYAxjCJJQe9m5AGEaPdPyVLOKRHrD03dTVvafYVmgtWnpywfUdDd9hwDZck4u6PAS8-atL8vG0eV-_JNu359f14zYBIeSQ8BQs06AyyIq8shw4YxXUFkpZl3WGDLTIleAIupA607LCHFXsJK8rVYFYkrs5N979NWIYTNOPvosrTSolLwpVCBVdcnaB70PwWJujj-_6b8OZmRCaxswIzYTQzAjj2MM8hvGDk0NvAjjsAK3zEYuxvfs_4AeHsX2x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441886836</pqid></control><display><type>article</type><title>Enhancing image processing architecture using deep learning for embedded vision systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Udendhran, R. ; Balamurugan, M. ; Suresh, A. ; Varatharajan, R.</creator><creatorcontrib>Udendhran, R. ; Balamurugan, M. ; Suresh, A. ; Varatharajan, R.</creatorcontrib><description>In recent years, the success and capabilities of embedded vision have showed up in embedded applications. The embedding of vision into electronic devices such as embedded medical applications is being driven by the availability of high-performance processors, integrating with deep learning algorithms, as well as advances in image processing technology. But, including image processing in embedded vision systems need huge amount of computational capabilities even to process a single image to detect an object and it's extremely challenging to implement in embedded systems. Implementing deep learning algorithms and testing it on a task specific data set could provide enhanced results. In this paper, an approach for enhancing image processing architecture using deep learning for embedded vision systems is proposed and analyzed. Implementing deep learning algorithms and testing it on embedded vision yielded effective results.</description><identifier>ISSN: 0141-9331</identifier><identifier>EISSN: 1872-9436</identifier><identifier>DOI: 10.1016/j.micpro.2020.103094</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Algorithms ; Architecture ; Convolutional neural networks ; Deep learning ; Electronic devices ; Embedded systems ; Embedded vision systems ; Embedding ; Feature extraction ; Google inception network ; Image enhancement ; Image processing ; Machine learning ; Vision systems</subject><ispartof>Microprocessors and microsystems, 2020-07, Vol.76, p.103094, Article 103094</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Jul 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-12cd09c65c587bd1c100bcfdca4faf5e0c937631ec9849594be7e6ec941fb6bc3</citedby><cites>FETCH-LOGICAL-c334t-12cd09c65c587bd1c100bcfdca4faf5e0c937631ec9849594be7e6ec941fb6bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141933120301642$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Udendhran, R.</creatorcontrib><creatorcontrib>Balamurugan, M.</creatorcontrib><creatorcontrib>Suresh, A.</creatorcontrib><creatorcontrib>Varatharajan, R.</creatorcontrib><title>Enhancing image processing architecture using deep learning for embedded vision systems</title><title>Microprocessors and microsystems</title><description>In recent years, the success and capabilities of embedded vision have showed up in embedded applications. The embedding of vision into electronic devices such as embedded medical applications is being driven by the availability of high-performance processors, integrating with deep learning algorithms, as well as advances in image processing technology. But, including image processing in embedded vision systems need huge amount of computational capabilities even to process a single image to detect an object and it's extremely challenging to implement in embedded systems. Implementing deep learning algorithms and testing it on a task specific data set could provide enhanced results. In this paper, an approach for enhancing image processing architecture using deep learning for embedded vision systems is proposed and analyzed. Implementing deep learning algorithms and testing it on embedded vision yielded effective results.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Electronic devices</subject><subject>Embedded systems</subject><subject>Embedded vision systems</subject><subject>Embedding</subject><subject>Feature extraction</subject><subject>Google inception network</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Vision systems</subject><issn>0141-9331</issn><issn>1872-9436</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw8Bz12TJk2biyDL-gcWvCgeQzuZ7qZs2zVpF_z2ptazp2Eeb97M_Ai55WzFGVf3zap1cPT9KmXpJAmm5RlZ8CJPEy2FOicLxiVPtBD8klyF0DDGMqbSBfncdPuyA9ftqGvLHdIYAxjCJJQe9m5AGEaPdPyVLOKRHrD03dTVvafYVmgtWnpywfUdDd9hwDZck4u6PAS8-atL8vG0eV-_JNu359f14zYBIeSQ8BQs06AyyIq8shw4YxXUFkpZl3WGDLTIleAIupA607LCHFXsJK8rVYFYkrs5N979NWIYTNOPvosrTSolLwpVCBVdcnaB70PwWJujj-_6b8OZmRCaxswIzYTQzAjj2MM8hvGDk0NvAjjsAK3zEYuxvfs_4AeHsX2x</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Udendhran, R.</creator><creator>Balamurugan, M.</creator><creator>Suresh, A.</creator><creator>Varatharajan, R.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202007</creationdate><title>Enhancing image processing architecture using deep learning for embedded vision systems</title><author>Udendhran, R. ; Balamurugan, M. ; Suresh, A. ; Varatharajan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-12cd09c65c587bd1c100bcfdca4faf5e0c937631ec9849594be7e6ec941fb6bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Electronic devices</topic><topic>Embedded systems</topic><topic>Embedded vision systems</topic><topic>Embedding</topic><topic>Feature extraction</topic><topic>Google inception network</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Udendhran, R.</creatorcontrib><creatorcontrib>Balamurugan, M.</creatorcontrib><creatorcontrib>Suresh, A.</creatorcontrib><creatorcontrib>Varatharajan, R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Microprocessors and microsystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Udendhran, R.</au><au>Balamurugan, M.</au><au>Suresh, A.</au><au>Varatharajan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing image processing architecture using deep learning for embedded vision systems</atitle><jtitle>Microprocessors and microsystems</jtitle><date>2020-07</date><risdate>2020</risdate><volume>76</volume><spage>103094</spage><pages>103094-</pages><artnum>103094</artnum><issn>0141-9331</issn><eissn>1872-9436</eissn><abstract>In recent years, the success and capabilities of embedded vision have showed up in embedded applications. The embedding of vision into electronic devices such as embedded medical applications is being driven by the availability of high-performance processors, integrating with deep learning algorithms, as well as advances in image processing technology. But, including image processing in embedded vision systems need huge amount of computational capabilities even to process a single image to detect an object and it's extremely challenging to implement in embedded systems. Implementing deep learning algorithms and testing it on a task specific data set could provide enhanced results. In this paper, an approach for enhancing image processing architecture using deep learning for embedded vision systems is proposed and analyzed. Implementing deep learning algorithms and testing it on embedded vision yielded effective results.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.micpro.2020.103094</doi></addata></record>
fulltext fulltext
identifier ISSN: 0141-9331
ispartof Microprocessors and microsystems, 2020-07, Vol.76, p.103094, Article 103094
issn 0141-9331
1872-9436
language eng
recordid cdi_proquest_journals_2441886836
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Architecture
Convolutional neural networks
Deep learning
Electronic devices
Embedded systems
Embedded vision systems
Embedding
Feature extraction
Google inception network
Image enhancement
Image processing
Machine learning
Vision systems
title Enhancing image processing architecture using deep learning for embedded vision systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20image%20processing%20architecture%20using%20deep%20learning%20for%20embedded%20vision%20systems&rft.jtitle=Microprocessors%20and%20microsystems&rft.au=Udendhran,%20R.&rft.date=2020-07&rft.volume=76&rft.spage=103094&rft.pages=103094-&rft.artnum=103094&rft.issn=0141-9331&rft.eissn=1872-9436&rft_id=info:doi/10.1016/j.micpro.2020.103094&rft_dat=%3Cproquest_cross%3E2441886836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441886836&rft_id=info:pmid/&rft_els_id=S0141933120301642&rfr_iscdi=true