Enhancing image processing architecture using deep learning for embedded vision systems
In recent years, the success and capabilities of embedded vision have showed up in embedded applications. The embedding of vision into electronic devices such as embedded medical applications is being driven by the availability of high-performance processors, integrating with deep learning algorithm...
Gespeichert in:
Veröffentlicht in: | Microprocessors and microsystems 2020-07, Vol.76, p.103094, Article 103094 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103094 |
container_title | Microprocessors and microsystems |
container_volume | 76 |
creator | Udendhran, R. Balamurugan, M. Suresh, A. Varatharajan, R. |
description | In recent years, the success and capabilities of embedded vision have showed up in embedded applications. The embedding of vision into electronic devices such as embedded medical applications is being driven by the availability of high-performance processors, integrating with deep learning algorithms, as well as advances in image processing technology. But, including image processing in embedded vision systems need huge amount of computational capabilities even to process a single image to detect an object and it's extremely challenging to implement in embedded systems. Implementing deep learning algorithms and testing it on a task specific data set could provide enhanced results. In this paper, an approach for enhancing image processing architecture using deep learning for embedded vision systems is proposed and analyzed. Implementing deep learning algorithms and testing it on embedded vision yielded effective results. |
doi_str_mv | 10.1016/j.micpro.2020.103094 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441886836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141933120301642</els_id><sourcerecordid>2441886836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-12cd09c65c587bd1c100bcfdca4faf5e0c937631ec9849594be7e6ec941fb6bc3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw8Bz12TJk2biyDL-gcWvCgeQzuZ7qZs2zVpF_z2ptazp2Eeb97M_Ai55WzFGVf3zap1cPT9KmXpJAmm5RlZ8CJPEy2FOicLxiVPtBD8klyF0DDGMqbSBfncdPuyA9ftqGvLHdIYAxjCJJQe9m5AGEaPdPyVLOKRHrD03dTVvafYVmgtWnpywfUdDd9hwDZck4u6PAS8-atL8vG0eV-_JNu359f14zYBIeSQ8BQs06AyyIq8shw4YxXUFkpZl3WGDLTIleAIupA607LCHFXsJK8rVYFYkrs5N979NWIYTNOPvosrTSolLwpVCBVdcnaB70PwWJujj-_6b8OZmRCaxswIzYTQzAjj2MM8hvGDk0NvAjjsAK3zEYuxvfs_4AeHsX2x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441886836</pqid></control><display><type>article</type><title>Enhancing image processing architecture using deep learning for embedded vision systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Udendhran, R. ; Balamurugan, M. ; Suresh, A. ; Varatharajan, R.</creator><creatorcontrib>Udendhran, R. ; Balamurugan, M. ; Suresh, A. ; Varatharajan, R.</creatorcontrib><description>In recent years, the success and capabilities of embedded vision have showed up in embedded applications. The embedding of vision into electronic devices such as embedded medical applications is being driven by the availability of high-performance processors, integrating with deep learning algorithms, as well as advances in image processing technology. But, including image processing in embedded vision systems need huge amount of computational capabilities even to process a single image to detect an object and it's extremely challenging to implement in embedded systems. Implementing deep learning algorithms and testing it on a task specific data set could provide enhanced results. In this paper, an approach for enhancing image processing architecture using deep learning for embedded vision systems is proposed and analyzed. Implementing deep learning algorithms and testing it on embedded vision yielded effective results.</description><identifier>ISSN: 0141-9331</identifier><identifier>EISSN: 1872-9436</identifier><identifier>DOI: 10.1016/j.micpro.2020.103094</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Algorithms ; Architecture ; Convolutional neural networks ; Deep learning ; Electronic devices ; Embedded systems ; Embedded vision systems ; Embedding ; Feature extraction ; Google inception network ; Image enhancement ; Image processing ; Machine learning ; Vision systems</subject><ispartof>Microprocessors and microsystems, 2020-07, Vol.76, p.103094, Article 103094</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Jul 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-12cd09c65c587bd1c100bcfdca4faf5e0c937631ec9849594be7e6ec941fb6bc3</citedby><cites>FETCH-LOGICAL-c334t-12cd09c65c587bd1c100bcfdca4faf5e0c937631ec9849594be7e6ec941fb6bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141933120301642$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Udendhran, R.</creatorcontrib><creatorcontrib>Balamurugan, M.</creatorcontrib><creatorcontrib>Suresh, A.</creatorcontrib><creatorcontrib>Varatharajan, R.</creatorcontrib><title>Enhancing image processing architecture using deep learning for embedded vision systems</title><title>Microprocessors and microsystems</title><description>In recent years, the success and capabilities of embedded vision have showed up in embedded applications. The embedding of vision into electronic devices such as embedded medical applications is being driven by the availability of high-performance processors, integrating with deep learning algorithms, as well as advances in image processing technology. But, including image processing in embedded vision systems need huge amount of computational capabilities even to process a single image to detect an object and it's extremely challenging to implement in embedded systems. Implementing deep learning algorithms and testing it on a task specific data set could provide enhanced results. In this paper, an approach for enhancing image processing architecture using deep learning for embedded vision systems is proposed and analyzed. Implementing deep learning algorithms and testing it on embedded vision yielded effective results.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Electronic devices</subject><subject>Embedded systems</subject><subject>Embedded vision systems</subject><subject>Embedding</subject><subject>Feature extraction</subject><subject>Google inception network</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Vision systems</subject><issn>0141-9331</issn><issn>1872-9436</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw8Bz12TJk2biyDL-gcWvCgeQzuZ7qZs2zVpF_z2ptazp2Eeb97M_Ai55WzFGVf3zap1cPT9KmXpJAmm5RlZ8CJPEy2FOicLxiVPtBD8klyF0DDGMqbSBfncdPuyA9ftqGvLHdIYAxjCJJQe9m5AGEaPdPyVLOKRHrD03dTVvafYVmgtWnpywfUdDd9hwDZck4u6PAS8-atL8vG0eV-_JNu359f14zYBIeSQ8BQs06AyyIq8shw4YxXUFkpZl3WGDLTIleAIupA607LCHFXsJK8rVYFYkrs5N979NWIYTNOPvosrTSolLwpVCBVdcnaB70PwWJujj-_6b8OZmRCaxswIzYTQzAjj2MM8hvGDk0NvAjjsAK3zEYuxvfs_4AeHsX2x</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Udendhran, R.</creator><creator>Balamurugan, M.</creator><creator>Suresh, A.</creator><creator>Varatharajan, R.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202007</creationdate><title>Enhancing image processing architecture using deep learning for embedded vision systems</title><author>Udendhran, R. ; Balamurugan, M. ; Suresh, A. ; Varatharajan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-12cd09c65c587bd1c100bcfdca4faf5e0c937631ec9849594be7e6ec941fb6bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Electronic devices</topic><topic>Embedded systems</topic><topic>Embedded vision systems</topic><topic>Embedding</topic><topic>Feature extraction</topic><topic>Google inception network</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Udendhran, R.</creatorcontrib><creatorcontrib>Balamurugan, M.</creatorcontrib><creatorcontrib>Suresh, A.</creatorcontrib><creatorcontrib>Varatharajan, R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Microprocessors and microsystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Udendhran, R.</au><au>Balamurugan, M.</au><au>Suresh, A.</au><au>Varatharajan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing image processing architecture using deep learning for embedded vision systems</atitle><jtitle>Microprocessors and microsystems</jtitle><date>2020-07</date><risdate>2020</risdate><volume>76</volume><spage>103094</spage><pages>103094-</pages><artnum>103094</artnum><issn>0141-9331</issn><eissn>1872-9436</eissn><abstract>In recent years, the success and capabilities of embedded vision have showed up in embedded applications. The embedding of vision into electronic devices such as embedded medical applications is being driven by the availability of high-performance processors, integrating with deep learning algorithms, as well as advances in image processing technology. But, including image processing in embedded vision systems need huge amount of computational capabilities even to process a single image to detect an object and it's extremely challenging to implement in embedded systems. Implementing deep learning algorithms and testing it on a task specific data set could provide enhanced results. In this paper, an approach for enhancing image processing architecture using deep learning for embedded vision systems is proposed and analyzed. Implementing deep learning algorithms and testing it on embedded vision yielded effective results.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.micpro.2020.103094</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-9331 |
ispartof | Microprocessors and microsystems, 2020-07, Vol.76, p.103094, Article 103094 |
issn | 0141-9331 1872-9436 |
language | eng |
recordid | cdi_proquest_journals_2441886836 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Architecture Convolutional neural networks Deep learning Electronic devices Embedded systems Embedded vision systems Embedding Feature extraction Google inception network Image enhancement Image processing Machine learning Vision systems |
title | Enhancing image processing architecture using deep learning for embedded vision systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20image%20processing%20architecture%20using%20deep%20learning%20for%20embedded%20vision%20systems&rft.jtitle=Microprocessors%20and%20microsystems&rft.au=Udendhran,%20R.&rft.date=2020-07&rft.volume=76&rft.spage=103094&rft.pages=103094-&rft.artnum=103094&rft.issn=0141-9331&rft.eissn=1872-9436&rft_id=info:doi/10.1016/j.micpro.2020.103094&rft_dat=%3Cproquest_cross%3E2441886836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441886836&rft_id=info:pmid/&rft_els_id=S0141933120301642&rfr_iscdi=true |