Automated operational logging plan considering multi-criteria optimization
•Field information is limited by the need to cover large and remote areas.•Multiple objectives should be considered while planning and executing forest management.•Forest management should be multi-functional, multipurpose and sustainable.•Novelty automated and multiobjective approach to forest mana...
Gespeichert in:
Veröffentlicht in: | Computers and electronics in agriculture 2020-03, Vol.170, p.105253, Article 105253 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105253 |
container_title | Computers and electronics in agriculture |
container_volume | 170 |
creator | Görgens, Eric Bastos Mund, Jan-Peter Cremer, Tobias de Conto, Tiago Krause, Stuart Valbuena, Ruben Rodriguez, Luiz Carlos Estraviz |
description | •Field information is limited by the need to cover large and remote areas.•Multiple objectives should be considered while planning and executing forest management.•Forest management should be multi-functional, multipurpose and sustainable.•Novelty automated and multiobjective approach to forest management planning.
Multiple goals should be considered while planning and executing forest management. This study proposes a new multidimensional framework for a precision forestry approach assisted by airborne laser scanning data (ALS). Therefore, successful management operations become a key element in the process of promoting protection through sustainable development. Thirteen relevant variables were derived from ALS data, such as: canopy height, terrain topography, relative vegetation density, forest gaps, slope restrictions, skidder restrictions, load truck restrictions, topographic wetness, flow accumulation, horizontal distance to drainage, vertical elevation from drainage, stream and headspring restrictions. Four different scenarios for the management plan optimization were studied: shortest distance, forest conservation, soil conservation and all combined. Results showed that the detailed forest information from ALS point clouds is useful to indicate regions not suitable for forest operations. Failure to properly consider the different factors involved may result in inadequate infrastructures, lower operational performance and constant re-planning requirements. |
doi_str_mv | 10.1016/j.compag.2020.105253 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441886512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169919305976</els_id><sourcerecordid>2441886512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-9346220e043ef502bdae507d868b38b5d99bfa5f729433bfd9451af347c957413</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxcF1x3zbJqNMAw-GXCj65AmaUlpm5qkgv56W-va1eVczjnc-wFwjeAOQVTctjvt-1E1OwzxsmKYkROwQSXHOUeQn4LNbCtzVAhxDi5ibOGsRck34GU_Jd-rZE3mRxtUcn5QXdb5pnFDk42dGjLth-iMDcuin7rkch1cmrWaM8n17vs3dgnOatVFe_U3t-D94f7t8JQfXx-fD_tjrgmhKReEFhhDCymxNYO4MsoyyE1ZlBUpK2aEqGrFao4FJaSqjaAMqZpQrgXjFJEtuFl7x-A_JhuTbP0U5qujxJSisiwYwrOLri4dfIzB1nIMrlfhSyIoF2qylSs1uVCTK7U5drfG7PzBp7NBRu3soK1xweokjXf_F_wAzLV3vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441886512</pqid></control><display><type>article</type><title>Automated operational logging plan considering multi-criteria optimization</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Görgens, Eric Bastos ; Mund, Jan-Peter ; Cremer, Tobias ; de Conto, Tiago ; Krause, Stuart ; Valbuena, Ruben ; Rodriguez, Luiz Carlos Estraviz</creator><creatorcontrib>Görgens, Eric Bastos ; Mund, Jan-Peter ; Cremer, Tobias ; de Conto, Tiago ; Krause, Stuart ; Valbuena, Ruben ; Rodriguez, Luiz Carlos Estraviz</creatorcontrib><description>•Field information is limited by the need to cover large and remote areas.•Multiple objectives should be considered while planning and executing forest management.•Forest management should be multi-functional, multipurpose and sustainable.•Novelty automated and multiobjective approach to forest management planning.
Multiple goals should be considered while planning and executing forest management. This study proposes a new multidimensional framework for a precision forestry approach assisted by airborne laser scanning data (ALS). Therefore, successful management operations become a key element in the process of promoting protection through sustainable development. Thirteen relevant variables were derived from ALS data, such as: canopy height, terrain topography, relative vegetation density, forest gaps, slope restrictions, skidder restrictions, load truck restrictions, topographic wetness, flow accumulation, horizontal distance to drainage, vertical elevation from drainage, stream and headspring restrictions. Four different scenarios for the management plan optimization were studied: shortest distance, forest conservation, soil conservation and all combined. Results showed that the detailed forest information from ALS point clouds is useful to indicate regions not suitable for forest operations. Failure to properly consider the different factors involved may result in inadequate infrastructures, lower operational performance and constant re-planning requirements.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2020.105253</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Airborne lasers ; Constrictions ; Drainage ; Elevation ; Forest management ; Forestry ; Multiple criterion ; Optimization ; Soil conservation ; Sustainable development</subject><ispartof>Computers and electronics in agriculture, 2020-03, Vol.170, p.105253, Article 105253</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-9346220e043ef502bdae507d868b38b5d99bfa5f729433bfd9451af347c957413</citedby><cites>FETCH-LOGICAL-c334t-9346220e043ef502bdae507d868b38b5d99bfa5f729433bfd9451af347c957413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compag.2020.105253$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Görgens, Eric Bastos</creatorcontrib><creatorcontrib>Mund, Jan-Peter</creatorcontrib><creatorcontrib>Cremer, Tobias</creatorcontrib><creatorcontrib>de Conto, Tiago</creatorcontrib><creatorcontrib>Krause, Stuart</creatorcontrib><creatorcontrib>Valbuena, Ruben</creatorcontrib><creatorcontrib>Rodriguez, Luiz Carlos Estraviz</creatorcontrib><title>Automated operational logging plan considering multi-criteria optimization</title><title>Computers and electronics in agriculture</title><description>•Field information is limited by the need to cover large and remote areas.•Multiple objectives should be considered while planning and executing forest management.•Forest management should be multi-functional, multipurpose and sustainable.•Novelty automated and multiobjective approach to forest management planning.
Multiple goals should be considered while planning and executing forest management. This study proposes a new multidimensional framework for a precision forestry approach assisted by airborne laser scanning data (ALS). Therefore, successful management operations become a key element in the process of promoting protection through sustainable development. Thirteen relevant variables were derived from ALS data, such as: canopy height, terrain topography, relative vegetation density, forest gaps, slope restrictions, skidder restrictions, load truck restrictions, topographic wetness, flow accumulation, horizontal distance to drainage, vertical elevation from drainage, stream and headspring restrictions. Four different scenarios for the management plan optimization were studied: shortest distance, forest conservation, soil conservation and all combined. Results showed that the detailed forest information from ALS point clouds is useful to indicate regions not suitable for forest operations. Failure to properly consider the different factors involved may result in inadequate infrastructures, lower operational performance and constant re-planning requirements.</description><subject>Airborne lasers</subject><subject>Constrictions</subject><subject>Drainage</subject><subject>Elevation</subject><subject>Forest management</subject><subject>Forestry</subject><subject>Multiple criterion</subject><subject>Optimization</subject><subject>Soil conservation</subject><subject>Sustainable development</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxcF1x3zbJqNMAw-GXCj65AmaUlpm5qkgv56W-va1eVczjnc-wFwjeAOQVTctjvt-1E1OwzxsmKYkROwQSXHOUeQn4LNbCtzVAhxDi5ibOGsRck34GU_Jd-rZE3mRxtUcn5QXdb5pnFDk42dGjLth-iMDcuin7rkch1cmrWaM8n17vs3dgnOatVFe_U3t-D94f7t8JQfXx-fD_tjrgmhKReEFhhDCymxNYO4MsoyyE1ZlBUpK2aEqGrFao4FJaSqjaAMqZpQrgXjFJEtuFl7x-A_JhuTbP0U5qujxJSisiwYwrOLri4dfIzB1nIMrlfhSyIoF2qylSs1uVCTK7U5drfG7PzBp7NBRu3soK1xweokjXf_F_wAzLV3vg</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Görgens, Eric Bastos</creator><creator>Mund, Jan-Peter</creator><creator>Cremer, Tobias</creator><creator>de Conto, Tiago</creator><creator>Krause, Stuart</creator><creator>Valbuena, Ruben</creator><creator>Rodriguez, Luiz Carlos Estraviz</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202003</creationdate><title>Automated operational logging plan considering multi-criteria optimization</title><author>Görgens, Eric Bastos ; Mund, Jan-Peter ; Cremer, Tobias ; de Conto, Tiago ; Krause, Stuart ; Valbuena, Ruben ; Rodriguez, Luiz Carlos Estraviz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-9346220e043ef502bdae507d868b38b5d99bfa5f729433bfd9451af347c957413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airborne lasers</topic><topic>Constrictions</topic><topic>Drainage</topic><topic>Elevation</topic><topic>Forest management</topic><topic>Forestry</topic><topic>Multiple criterion</topic><topic>Optimization</topic><topic>Soil conservation</topic><topic>Sustainable development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Görgens, Eric Bastos</creatorcontrib><creatorcontrib>Mund, Jan-Peter</creatorcontrib><creatorcontrib>Cremer, Tobias</creatorcontrib><creatorcontrib>de Conto, Tiago</creatorcontrib><creatorcontrib>Krause, Stuart</creatorcontrib><creatorcontrib>Valbuena, Ruben</creatorcontrib><creatorcontrib>Rodriguez, Luiz Carlos Estraviz</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Görgens, Eric Bastos</au><au>Mund, Jan-Peter</au><au>Cremer, Tobias</au><au>de Conto, Tiago</au><au>Krause, Stuart</au><au>Valbuena, Ruben</au><au>Rodriguez, Luiz Carlos Estraviz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated operational logging plan considering multi-criteria optimization</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2020-03</date><risdate>2020</risdate><volume>170</volume><spage>105253</spage><pages>105253-</pages><artnum>105253</artnum><issn>0168-1699</issn><eissn>1872-7107</eissn><abstract>•Field information is limited by the need to cover large and remote areas.•Multiple objectives should be considered while planning and executing forest management.•Forest management should be multi-functional, multipurpose and sustainable.•Novelty automated and multiobjective approach to forest management planning.
Multiple goals should be considered while planning and executing forest management. This study proposes a new multidimensional framework for a precision forestry approach assisted by airborne laser scanning data (ALS). Therefore, successful management operations become a key element in the process of promoting protection through sustainable development. Thirteen relevant variables were derived from ALS data, such as: canopy height, terrain topography, relative vegetation density, forest gaps, slope restrictions, skidder restrictions, load truck restrictions, topographic wetness, flow accumulation, horizontal distance to drainage, vertical elevation from drainage, stream and headspring restrictions. Four different scenarios for the management plan optimization were studied: shortest distance, forest conservation, soil conservation and all combined. Results showed that the detailed forest information from ALS point clouds is useful to indicate regions not suitable for forest operations. Failure to properly consider the different factors involved may result in inadequate infrastructures, lower operational performance and constant re-planning requirements.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2020.105253</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-1699 |
ispartof | Computers and electronics in agriculture, 2020-03, Vol.170, p.105253, Article 105253 |
issn | 0168-1699 1872-7107 |
language | eng |
recordid | cdi_proquest_journals_2441886512 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Airborne lasers Constrictions Drainage Elevation Forest management Forestry Multiple criterion Optimization Soil conservation Sustainable development |
title | Automated operational logging plan considering multi-criteria optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20operational%20logging%20plan%20considering%20multi-criteria%20optimization&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=G%C3%B6rgens,%20Eric%20Bastos&rft.date=2020-03&rft.volume=170&rft.spage=105253&rft.pages=105253-&rft.artnum=105253&rft.issn=0168-1699&rft.eissn=1872-7107&rft_id=info:doi/10.1016/j.compag.2020.105253&rft_dat=%3Cproquest_cross%3E2441886512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441886512&rft_id=info:pmid/&rft_els_id=S0168169919305976&rfr_iscdi=true |