Calculation method of acoustic radiation for floating bodies in shallow sea considering complex ocean acoustic environments

For floating bodies in shallow sea, the prediction of acoustic radiation requires consideration of complex acoustic environments. Generally, the influence of the sea surface, seabed and sound speed profile cannot be neglected. In this paper, a relevant calculation method in shallow sea considering t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2020-06, Vol.476, p.115330, Article 115330
Hauptverfasser: Jiang, Ling-Wen, Zou, Ming-Song, Liu, Shu-Xiao, Huang, He
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115330
container_title Journal of sound and vibration
container_volume 476
creator Jiang, Ling-Wen
Zou, Ming-Song
Liu, Shu-Xiao
Huang, He
description For floating bodies in shallow sea, the prediction of acoustic radiation requires consideration of complex acoustic environments. Generally, the influence of the sea surface, seabed and sound speed profile cannot be neglected. In this paper, a relevant calculation method in shallow sea considering the sound speed profile is developed by introducing the Green's function corresponding to a complex ocean acoustic environment into the three-dimensional sono-elasticity theory for ships. The inviscid, irrotational and compressible fluid, which can be regarded as an acoustic medium, is considered. The fluid load is taken into account by hydrodynamic coefficients during the fluid-structure coupling vibration analysis. The structural vibration response is obtained by the modal superposition method. The simple-source method is employed to calculate the acoustic field. The mirror method and the normal mode method are applied in the calculation of near-field and far-field Green's functions respectively. A series of numerical examples are given and the results are compared with those of the full FEM approach to verify the accuracy and applicability of the presented method.
doi_str_mv 10.1016/j.jsv.2020.115330
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441886498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X20301619</els_id><sourcerecordid>2441886498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-5d2708fa479101fb78b7f4f4256c10c4498207f0f1e179de129c7485402a95163</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvA89ZJNvuFJyl-geBFwVtIsxObZZvUZLcq_nlTVvDmaRjmfd-ZeQg5Z7BgwMrLbtHF3YIDTz0r8hwOyIxBU2R1UdaHZAbAeSZKeD0mJzF2ANCIXMzI91L1euzVYL2jGxzWvqXeUKX9GAeraVCtnYbGB2p6nxr3Rle-tRipdTSuVd_7DxpRUe1dtC2GvUL7zbbHT-o1KveXh25ng3cbdEM8JUdG9RHPfuucvNzePC_vs8enu4fl9WOmc14MWdHyCmqjRNWkV82qqleVEUbwotQMtBBNzaEyYBiyqmmR8UZXoi4EcNUUrMzn5GLK3Qb_PmIcZOfH4NJKyYVgdV2miKRik0oHH2NAI7fBblT4kgzknrHsZGIs94zlxDh5riYPpvN3FoOM2qLT2NqAepCtt_-4fwBshoW2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441886498</pqid></control><display><type>article</type><title>Calculation method of acoustic radiation for floating bodies in shallow sea considering complex ocean acoustic environments</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jiang, Ling-Wen ; Zou, Ming-Song ; Liu, Shu-Xiao ; Huang, He</creator><creatorcontrib>Jiang, Ling-Wen ; Zou, Ming-Song ; Liu, Shu-Xiao ; Huang, He</creatorcontrib><description>For floating bodies in shallow sea, the prediction of acoustic radiation requires consideration of complex acoustic environments. Generally, the influence of the sea surface, seabed and sound speed profile cannot be neglected. In this paper, a relevant calculation method in shallow sea considering the sound speed profile is developed by introducing the Green's function corresponding to a complex ocean acoustic environment into the three-dimensional sono-elasticity theory for ships. The inviscid, irrotational and compressible fluid, which can be regarded as an acoustic medium, is considered. The fluid load is taken into account by hydrodynamic coefficients during the fluid-structure coupling vibration analysis. The structural vibration response is obtained by the modal superposition method. The simple-source method is employed to calculate the acoustic field. The mirror method and the normal mode method are applied in the calculation of near-field and far-field Green's functions respectively. A series of numerical examples are given and the results are compared with those of the full FEM approach to verify the accuracy and applicability of the presented method.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2020.115330</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Acoustic radiation ; Acoustics ; Compressible fluids ; Far fields ; Finite element analysis ; Finite element method ; Floating bodies ; Green's function ; Green's functions ; Hydrodynamic coefficients ; Mode superposition method ; Ocean acoustics ; Ocean engineering ; Ocean floor ; Sono-elasticity ; Sound ; Sound waves ; Structural vibration ; Underwater acoustics ; Vibration ; Vibration analysis</subject><ispartof>Journal of sound and vibration, 2020-06, Vol.476, p.115330, Article 115330</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jun 23, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-5d2708fa479101fb78b7f4f4256c10c4498207f0f1e179de129c7485402a95163</citedby><cites>FETCH-LOGICAL-c325t-5d2708fa479101fb78b7f4f4256c10c4498207f0f1e179de129c7485402a95163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2020.115330$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jiang, Ling-Wen</creatorcontrib><creatorcontrib>Zou, Ming-Song</creatorcontrib><creatorcontrib>Liu, Shu-Xiao</creatorcontrib><creatorcontrib>Huang, He</creatorcontrib><title>Calculation method of acoustic radiation for floating bodies in shallow sea considering complex ocean acoustic environments</title><title>Journal of sound and vibration</title><description>For floating bodies in shallow sea, the prediction of acoustic radiation requires consideration of complex acoustic environments. Generally, the influence of the sea surface, seabed and sound speed profile cannot be neglected. In this paper, a relevant calculation method in shallow sea considering the sound speed profile is developed by introducing the Green's function corresponding to a complex ocean acoustic environment into the three-dimensional sono-elasticity theory for ships. The inviscid, irrotational and compressible fluid, which can be regarded as an acoustic medium, is considered. The fluid load is taken into account by hydrodynamic coefficients during the fluid-structure coupling vibration analysis. The structural vibration response is obtained by the modal superposition method. The simple-source method is employed to calculate the acoustic field. The mirror method and the normal mode method are applied in the calculation of near-field and far-field Green's functions respectively. A series of numerical examples are given and the results are compared with those of the full FEM approach to verify the accuracy and applicability of the presented method.</description><subject>Acoustic radiation</subject><subject>Acoustics</subject><subject>Compressible fluids</subject><subject>Far fields</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Floating bodies</subject><subject>Green's function</subject><subject>Green's functions</subject><subject>Hydrodynamic coefficients</subject><subject>Mode superposition method</subject><subject>Ocean acoustics</subject><subject>Ocean engineering</subject><subject>Ocean floor</subject><subject>Sono-elasticity</subject><subject>Sound</subject><subject>Sound waves</subject><subject>Structural vibration</subject><subject>Underwater acoustics</subject><subject>Vibration</subject><subject>Vibration analysis</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvA89ZJNvuFJyl-geBFwVtIsxObZZvUZLcq_nlTVvDmaRjmfd-ZeQg5Z7BgwMrLbtHF3YIDTz0r8hwOyIxBU2R1UdaHZAbAeSZKeD0mJzF2ANCIXMzI91L1euzVYL2jGxzWvqXeUKX9GAeraVCtnYbGB2p6nxr3Rle-tRipdTSuVd_7DxpRUe1dtC2GvUL7zbbHT-o1KveXh25ng3cbdEM8JUdG9RHPfuucvNzePC_vs8enu4fl9WOmc14MWdHyCmqjRNWkV82qqleVEUbwotQMtBBNzaEyYBiyqmmR8UZXoi4EcNUUrMzn5GLK3Qb_PmIcZOfH4NJKyYVgdV2miKRik0oHH2NAI7fBblT4kgzknrHsZGIs94zlxDh5riYPpvN3FoOM2qLT2NqAepCtt_-4fwBshoW2</recordid><startdate>20200623</startdate><enddate>20200623</enddate><creator>Jiang, Ling-Wen</creator><creator>Zou, Ming-Song</creator><creator>Liu, Shu-Xiao</creator><creator>Huang, He</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20200623</creationdate><title>Calculation method of acoustic radiation for floating bodies in shallow sea considering complex ocean acoustic environments</title><author>Jiang, Ling-Wen ; Zou, Ming-Song ; Liu, Shu-Xiao ; Huang, He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-5d2708fa479101fb78b7f4f4256c10c4498207f0f1e179de129c7485402a95163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic radiation</topic><topic>Acoustics</topic><topic>Compressible fluids</topic><topic>Far fields</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Floating bodies</topic><topic>Green's function</topic><topic>Green's functions</topic><topic>Hydrodynamic coefficients</topic><topic>Mode superposition method</topic><topic>Ocean acoustics</topic><topic>Ocean engineering</topic><topic>Ocean floor</topic><topic>Sono-elasticity</topic><topic>Sound</topic><topic>Sound waves</topic><topic>Structural vibration</topic><topic>Underwater acoustics</topic><topic>Vibration</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Ling-Wen</creatorcontrib><creatorcontrib>Zou, Ming-Song</creatorcontrib><creatorcontrib>Liu, Shu-Xiao</creatorcontrib><creatorcontrib>Huang, He</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Ling-Wen</au><au>Zou, Ming-Song</au><au>Liu, Shu-Xiao</au><au>Huang, He</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation method of acoustic radiation for floating bodies in shallow sea considering complex ocean acoustic environments</atitle><jtitle>Journal of sound and vibration</jtitle><date>2020-06-23</date><risdate>2020</risdate><volume>476</volume><spage>115330</spage><pages>115330-</pages><artnum>115330</artnum><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>For floating bodies in shallow sea, the prediction of acoustic radiation requires consideration of complex acoustic environments. Generally, the influence of the sea surface, seabed and sound speed profile cannot be neglected. In this paper, a relevant calculation method in shallow sea considering the sound speed profile is developed by introducing the Green's function corresponding to a complex ocean acoustic environment into the three-dimensional sono-elasticity theory for ships. The inviscid, irrotational and compressible fluid, which can be regarded as an acoustic medium, is considered. The fluid load is taken into account by hydrodynamic coefficients during the fluid-structure coupling vibration analysis. The structural vibration response is obtained by the modal superposition method. The simple-source method is employed to calculate the acoustic field. The mirror method and the normal mode method are applied in the calculation of near-field and far-field Green's functions respectively. A series of numerical examples are given and the results are compared with those of the full FEM approach to verify the accuracy and applicability of the presented method.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2020.115330</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2020-06, Vol.476, p.115330, Article 115330
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_journals_2441886498
source Access via ScienceDirect (Elsevier)
subjects Acoustic radiation
Acoustics
Compressible fluids
Far fields
Finite element analysis
Finite element method
Floating bodies
Green's function
Green's functions
Hydrodynamic coefficients
Mode superposition method
Ocean acoustics
Ocean engineering
Ocean floor
Sono-elasticity
Sound
Sound waves
Structural vibration
Underwater acoustics
Vibration
Vibration analysis
title Calculation method of acoustic radiation for floating bodies in shallow sea considering complex ocean acoustic environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20method%20of%20acoustic%20radiation%20for%20floating%20bodies%20in%20shallow%20sea%20considering%20complex%20ocean%20acoustic%20environments&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Jiang,%20Ling-Wen&rft.date=2020-06-23&rft.volume=476&rft.spage=115330&rft.pages=115330-&rft.artnum=115330&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2020.115330&rft_dat=%3Cproquest_cross%3E2441886498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441886498&rft_id=info:pmid/&rft_els_id=S0022460X20301619&rfr_iscdi=true