Scalable angular adaptivity for Boltzmann transport
This paper describes an angular adaptivity algorithm for Boltzmann transport applications which for the first time shows evidence of O(n) scaling in both runtime and memory usage, where n is the number of adapted angles. This adaptivity uses Haar wavelets, which perform structured h-adaptivity built...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2020-04, Vol.406, p.109124, Article 109124 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109124 |
container_title | Journal of computational physics |
container_volume | 406 |
creator | Dargaville, S. Buchan, A.G. Smedley-Stevenson, R.P. Smith, P.N. Pain, C.C. |
description | This paper describes an angular adaptivity algorithm for Boltzmann transport applications which for the first time shows evidence of O(n) scaling in both runtime and memory usage, where n is the number of adapted angles. This adaptivity uses Haar wavelets, which perform structured h-adaptivity built on top of a hierarchical P0 FEM discretisation of a 2D angular domain, allowing different anisotropic angular resolution to be applied across space/energy. These wavelets can be mapped back to their underlying P0 space scalably, allowing traditional DG-sweep algorithms if desired. Instead we build a spatial discretisation on unstructured grids designed to use less memory than competing alternatives in general applications and construct a compatible matrix-free multigrid method which can handle our adapted angular discretisation. Fixed angular refinement, along with regular and goal-based error metrics are shown in three example problems taken from neutronics/radiative transfer applications.
•Shows evidence of scalable adaptivity in runtime/memory up to 15 levels of refinement.•Produces angular discretisation with solid angle of 10−9.•Two problems shown would take 1013-1014 DOFs to resolve with our Haar discretisation if adaptivity were not used. |
doi_str_mv | 10.1016/j.jcp.2019.109124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441884677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999119308290</els_id><sourcerecordid>2441884677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-9a5e09428338cf1e48c95f236289145507e406839cc016cc46eab40a87504cc53</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuC562Tr90ET1r8goIH9RzSaVaybHfXJC3UX2_KevY0M_C-M-88hFxTWFCg1W27aHFcMKA6z5oycUJmuYGS1bQ6JTMARkutNT0nFzG2AKCkUDPC39F2dt25wvZfu86Gwm7smPzep0PRDKF4GLr0s7V9X6Rg-zgOIV2Ss8Z20V391Tn5fHr8WL6Uq7fn1-X9qkTOZCq1lQ60YIpzhQ11QqGWDeMVU5oKKaF2AirFNWL-AFFUzq4FWFVLEIiSz8nNtHcMw_fOxWTaYRf6fNIwIahSoqrrrKKTCsMQY3CNGYPf2nAwFMyRjWlNZmOObMzEJnvuJo_L8ffeBRPRux7dxgeHyWwG_4_7F9MGajc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441884677</pqid></control><display><type>article</type><title>Scalable angular adaptivity for Boltzmann transport</title><source>Elsevier ScienceDirect Journals</source><creator>Dargaville, S. ; Buchan, A.G. ; Smedley-Stevenson, R.P. ; Smith, P.N. ; Pain, C.C.</creator><creatorcontrib>Dargaville, S. ; Buchan, A.G. ; Smedley-Stevenson, R.P. ; Smith, P.N. ; Pain, C.C.</creatorcontrib><description>This paper describes an angular adaptivity algorithm for Boltzmann transport applications which for the first time shows evidence of O(n) scaling in both runtime and memory usage, where n is the number of adapted angles. This adaptivity uses Haar wavelets, which perform structured h-adaptivity built on top of a hierarchical P0 FEM discretisation of a 2D angular domain, allowing different anisotropic angular resolution to be applied across space/energy. These wavelets can be mapped back to their underlying P0 space scalably, allowing traditional DG-sweep algorithms if desired. Instead we build a spatial discretisation on unstructured grids designed to use less memory than competing alternatives in general applications and construct a compatible matrix-free multigrid method which can handle our adapted angular discretisation. Fixed angular refinement, along with regular and goal-based error metrics are shown in three example problems taken from neutronics/radiative transfer applications.
•Shows evidence of scalable adaptivity in runtime/memory up to 15 levels of refinement.•Produces angular discretisation with solid angle of 10−9.•Two problems shown would take 1013-1014 DOFs to resolve with our Haar discretisation if adaptivity were not used.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2019.109124</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Algorithms ; Angular adaptivity ; Angular resolution ; Boltzmann transport ; Computational physics ; Discretization ; Fast Wavelet Transform ; Goal based ; Haar wavelets ; Radiative transfer ; Unstructured grids (mathematics)</subject><ispartof>Journal of computational physics, 2020-04, Vol.406, p.109124, Article 109124</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Apr 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-9a5e09428338cf1e48c95f236289145507e406839cc016cc46eab40a87504cc53</citedby><cites>FETCH-LOGICAL-c325t-9a5e09428338cf1e48c95f236289145507e406839cc016cc46eab40a87504cc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999119308290$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Dargaville, S.</creatorcontrib><creatorcontrib>Buchan, A.G.</creatorcontrib><creatorcontrib>Smedley-Stevenson, R.P.</creatorcontrib><creatorcontrib>Smith, P.N.</creatorcontrib><creatorcontrib>Pain, C.C.</creatorcontrib><title>Scalable angular adaptivity for Boltzmann transport</title><title>Journal of computational physics</title><description>This paper describes an angular adaptivity algorithm for Boltzmann transport applications which for the first time shows evidence of O(n) scaling in both runtime and memory usage, where n is the number of adapted angles. This adaptivity uses Haar wavelets, which perform structured h-adaptivity built on top of a hierarchical P0 FEM discretisation of a 2D angular domain, allowing different anisotropic angular resolution to be applied across space/energy. These wavelets can be mapped back to their underlying P0 space scalably, allowing traditional DG-sweep algorithms if desired. Instead we build a spatial discretisation on unstructured grids designed to use less memory than competing alternatives in general applications and construct a compatible matrix-free multigrid method which can handle our adapted angular discretisation. Fixed angular refinement, along with regular and goal-based error metrics are shown in three example problems taken from neutronics/radiative transfer applications.
•Shows evidence of scalable adaptivity in runtime/memory up to 15 levels of refinement.•Produces angular discretisation with solid angle of 10−9.•Two problems shown would take 1013-1014 DOFs to resolve with our Haar discretisation if adaptivity were not used.</description><subject>Algorithms</subject><subject>Angular adaptivity</subject><subject>Angular resolution</subject><subject>Boltzmann transport</subject><subject>Computational physics</subject><subject>Discretization</subject><subject>Fast Wavelet Transform</subject><subject>Goal based</subject><subject>Haar wavelets</subject><subject>Radiative transfer</subject><subject>Unstructured grids (mathematics)</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuC562Tr90ET1r8goIH9RzSaVaybHfXJC3UX2_KevY0M_C-M-88hFxTWFCg1W27aHFcMKA6z5oycUJmuYGS1bQ6JTMARkutNT0nFzG2AKCkUDPC39F2dt25wvZfu86Gwm7smPzep0PRDKF4GLr0s7V9X6Rg-zgOIV2Ss8Z20V391Tn5fHr8WL6Uq7fn1-X9qkTOZCq1lQ60YIpzhQ11QqGWDeMVU5oKKaF2AirFNWL-AFFUzq4FWFVLEIiSz8nNtHcMw_fOxWTaYRf6fNIwIahSoqrrrKKTCsMQY3CNGYPf2nAwFMyRjWlNZmOObMzEJnvuJo_L8ffeBRPRux7dxgeHyWwG_4_7F9MGajc</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Dargaville, S.</creator><creator>Buchan, A.G.</creator><creator>Smedley-Stevenson, R.P.</creator><creator>Smith, P.N.</creator><creator>Pain, C.C.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200401</creationdate><title>Scalable angular adaptivity for Boltzmann transport</title><author>Dargaville, S. ; Buchan, A.G. ; Smedley-Stevenson, R.P. ; Smith, P.N. ; Pain, C.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-9a5e09428338cf1e48c95f236289145507e406839cc016cc46eab40a87504cc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Angular adaptivity</topic><topic>Angular resolution</topic><topic>Boltzmann transport</topic><topic>Computational physics</topic><topic>Discretization</topic><topic>Fast Wavelet Transform</topic><topic>Goal based</topic><topic>Haar wavelets</topic><topic>Radiative transfer</topic><topic>Unstructured grids (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dargaville, S.</creatorcontrib><creatorcontrib>Buchan, A.G.</creatorcontrib><creatorcontrib>Smedley-Stevenson, R.P.</creatorcontrib><creatorcontrib>Smith, P.N.</creatorcontrib><creatorcontrib>Pain, C.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dargaville, S.</au><au>Buchan, A.G.</au><au>Smedley-Stevenson, R.P.</au><au>Smith, P.N.</au><au>Pain, C.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable angular adaptivity for Boltzmann transport</atitle><jtitle>Journal of computational physics</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>406</volume><spage>109124</spage><pages>109124-</pages><artnum>109124</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>This paper describes an angular adaptivity algorithm for Boltzmann transport applications which for the first time shows evidence of O(n) scaling in both runtime and memory usage, where n is the number of adapted angles. This adaptivity uses Haar wavelets, which perform structured h-adaptivity built on top of a hierarchical P0 FEM discretisation of a 2D angular domain, allowing different anisotropic angular resolution to be applied across space/energy. These wavelets can be mapped back to their underlying P0 space scalably, allowing traditional DG-sweep algorithms if desired. Instead we build a spatial discretisation on unstructured grids designed to use less memory than competing alternatives in general applications and construct a compatible matrix-free multigrid method which can handle our adapted angular discretisation. Fixed angular refinement, along with regular and goal-based error metrics are shown in three example problems taken from neutronics/radiative transfer applications.
•Shows evidence of scalable adaptivity in runtime/memory up to 15 levels of refinement.•Produces angular discretisation with solid angle of 10−9.•Two problems shown would take 1013-1014 DOFs to resolve with our Haar discretisation if adaptivity were not used.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2019.109124</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2020-04, Vol.406, p.109124, Article 109124 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2441884677 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Angular adaptivity Angular resolution Boltzmann transport Computational physics Discretization Fast Wavelet Transform Goal based Haar wavelets Radiative transfer Unstructured grids (mathematics) |
title | Scalable angular adaptivity for Boltzmann transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20angular%20adaptivity%20for%20Boltzmann%20transport&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Dargaville,%20S.&rft.date=2020-04-01&rft.volume=406&rft.spage=109124&rft.pages=109124-&rft.artnum=109124&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2019.109124&rft_dat=%3Cproquest_cross%3E2441884677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441884677&rft_id=info:pmid/&rft_els_id=S0021999119308290&rfr_iscdi=true |