Scalable angular adaptivity for Boltzmann transport

This paper describes an angular adaptivity algorithm for Boltzmann transport applications which for the first time shows evidence of O(n) scaling in both runtime and memory usage, where n is the number of adapted angles. This adaptivity uses Haar wavelets, which perform structured h-adaptivity built...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2020-04, Vol.406, p.109124, Article 109124
Hauptverfasser: Dargaville, S., Buchan, A.G., Smedley-Stevenson, R.P., Smith, P.N., Pain, C.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109124
container_title Journal of computational physics
container_volume 406
creator Dargaville, S.
Buchan, A.G.
Smedley-Stevenson, R.P.
Smith, P.N.
Pain, C.C.
description This paper describes an angular adaptivity algorithm for Boltzmann transport applications which for the first time shows evidence of O(n) scaling in both runtime and memory usage, where n is the number of adapted angles. This adaptivity uses Haar wavelets, which perform structured h-adaptivity built on top of a hierarchical P0 FEM discretisation of a 2D angular domain, allowing different anisotropic angular resolution to be applied across space/energy. These wavelets can be mapped back to their underlying P0 space scalably, allowing traditional DG-sweep algorithms if desired. Instead we build a spatial discretisation on unstructured grids designed to use less memory than competing alternatives in general applications and construct a compatible matrix-free multigrid method which can handle our adapted angular discretisation. Fixed angular refinement, along with regular and goal-based error metrics are shown in three example problems taken from neutronics/radiative transfer applications. •Shows evidence of scalable adaptivity in runtime/memory up to 15 levels of refinement.•Produces angular discretisation with solid angle of 10−9.•Two problems shown would take 1013-1014 DOFs to resolve with our Haar discretisation if adaptivity were not used.
doi_str_mv 10.1016/j.jcp.2019.109124
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441884677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999119308290</els_id><sourcerecordid>2441884677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-9a5e09428338cf1e48c95f236289145507e406839cc016cc46eab40a87504cc53</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuC562Tr90ET1r8goIH9RzSaVaybHfXJC3UX2_KevY0M_C-M-88hFxTWFCg1W27aHFcMKA6z5oycUJmuYGS1bQ6JTMARkutNT0nFzG2AKCkUDPC39F2dt25wvZfu86Gwm7smPzep0PRDKF4GLr0s7V9X6Rg-zgOIV2Ss8Z20V391Tn5fHr8WL6Uq7fn1-X9qkTOZCq1lQ60YIpzhQ11QqGWDeMVU5oKKaF2AirFNWL-AFFUzq4FWFVLEIiSz8nNtHcMw_fOxWTaYRf6fNIwIahSoqrrrKKTCsMQY3CNGYPf2nAwFMyRjWlNZmOObMzEJnvuJo_L8ffeBRPRux7dxgeHyWwG_4_7F9MGajc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441884677</pqid></control><display><type>article</type><title>Scalable angular adaptivity for Boltzmann transport</title><source>Elsevier ScienceDirect Journals</source><creator>Dargaville, S. ; Buchan, A.G. ; Smedley-Stevenson, R.P. ; Smith, P.N. ; Pain, C.C.</creator><creatorcontrib>Dargaville, S. ; Buchan, A.G. ; Smedley-Stevenson, R.P. ; Smith, P.N. ; Pain, C.C.</creatorcontrib><description>This paper describes an angular adaptivity algorithm for Boltzmann transport applications which for the first time shows evidence of O(n) scaling in both runtime and memory usage, where n is the number of adapted angles. This adaptivity uses Haar wavelets, which perform structured h-adaptivity built on top of a hierarchical P0 FEM discretisation of a 2D angular domain, allowing different anisotropic angular resolution to be applied across space/energy. These wavelets can be mapped back to their underlying P0 space scalably, allowing traditional DG-sweep algorithms if desired. Instead we build a spatial discretisation on unstructured grids designed to use less memory than competing alternatives in general applications and construct a compatible matrix-free multigrid method which can handle our adapted angular discretisation. Fixed angular refinement, along with regular and goal-based error metrics are shown in three example problems taken from neutronics/radiative transfer applications. •Shows evidence of scalable adaptivity in runtime/memory up to 15 levels of refinement.•Produces angular discretisation with solid angle of 10−9.•Two problems shown would take 1013-1014 DOFs to resolve with our Haar discretisation if adaptivity were not used.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2019.109124</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Algorithms ; Angular adaptivity ; Angular resolution ; Boltzmann transport ; Computational physics ; Discretization ; Fast Wavelet Transform ; Goal based ; Haar wavelets ; Radiative transfer ; Unstructured grids (mathematics)</subject><ispartof>Journal of computational physics, 2020-04, Vol.406, p.109124, Article 109124</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Apr 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-9a5e09428338cf1e48c95f236289145507e406839cc016cc46eab40a87504cc53</citedby><cites>FETCH-LOGICAL-c325t-9a5e09428338cf1e48c95f236289145507e406839cc016cc46eab40a87504cc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999119308290$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Dargaville, S.</creatorcontrib><creatorcontrib>Buchan, A.G.</creatorcontrib><creatorcontrib>Smedley-Stevenson, R.P.</creatorcontrib><creatorcontrib>Smith, P.N.</creatorcontrib><creatorcontrib>Pain, C.C.</creatorcontrib><title>Scalable angular adaptivity for Boltzmann transport</title><title>Journal of computational physics</title><description>This paper describes an angular adaptivity algorithm for Boltzmann transport applications which for the first time shows evidence of O(n) scaling in both runtime and memory usage, where n is the number of adapted angles. This adaptivity uses Haar wavelets, which perform structured h-adaptivity built on top of a hierarchical P0 FEM discretisation of a 2D angular domain, allowing different anisotropic angular resolution to be applied across space/energy. These wavelets can be mapped back to their underlying P0 space scalably, allowing traditional DG-sweep algorithms if desired. Instead we build a spatial discretisation on unstructured grids designed to use less memory than competing alternatives in general applications and construct a compatible matrix-free multigrid method which can handle our adapted angular discretisation. Fixed angular refinement, along with regular and goal-based error metrics are shown in three example problems taken from neutronics/radiative transfer applications. •Shows evidence of scalable adaptivity in runtime/memory up to 15 levels of refinement.•Produces angular discretisation with solid angle of 10−9.•Two problems shown would take 1013-1014 DOFs to resolve with our Haar discretisation if adaptivity were not used.</description><subject>Algorithms</subject><subject>Angular adaptivity</subject><subject>Angular resolution</subject><subject>Boltzmann transport</subject><subject>Computational physics</subject><subject>Discretization</subject><subject>Fast Wavelet Transform</subject><subject>Goal based</subject><subject>Haar wavelets</subject><subject>Radiative transfer</subject><subject>Unstructured grids (mathematics)</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuC562Tr90ET1r8goIH9RzSaVaybHfXJC3UX2_KevY0M_C-M-88hFxTWFCg1W27aHFcMKA6z5oycUJmuYGS1bQ6JTMARkutNT0nFzG2AKCkUDPC39F2dt25wvZfu86Gwm7smPzep0PRDKF4GLr0s7V9X6Rg-zgOIV2Ss8Z20V391Tn5fHr8WL6Uq7fn1-X9qkTOZCq1lQ60YIpzhQ11QqGWDeMVU5oKKaF2AirFNWL-AFFUzq4FWFVLEIiSz8nNtHcMw_fOxWTaYRf6fNIwIahSoqrrrKKTCsMQY3CNGYPf2nAwFMyRjWlNZmOObMzEJnvuJo_L8ffeBRPRux7dxgeHyWwG_4_7F9MGajc</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Dargaville, S.</creator><creator>Buchan, A.G.</creator><creator>Smedley-Stevenson, R.P.</creator><creator>Smith, P.N.</creator><creator>Pain, C.C.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200401</creationdate><title>Scalable angular adaptivity for Boltzmann transport</title><author>Dargaville, S. ; Buchan, A.G. ; Smedley-Stevenson, R.P. ; Smith, P.N. ; Pain, C.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-9a5e09428338cf1e48c95f236289145507e406839cc016cc46eab40a87504cc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Angular adaptivity</topic><topic>Angular resolution</topic><topic>Boltzmann transport</topic><topic>Computational physics</topic><topic>Discretization</topic><topic>Fast Wavelet Transform</topic><topic>Goal based</topic><topic>Haar wavelets</topic><topic>Radiative transfer</topic><topic>Unstructured grids (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dargaville, S.</creatorcontrib><creatorcontrib>Buchan, A.G.</creatorcontrib><creatorcontrib>Smedley-Stevenson, R.P.</creatorcontrib><creatorcontrib>Smith, P.N.</creatorcontrib><creatorcontrib>Pain, C.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dargaville, S.</au><au>Buchan, A.G.</au><au>Smedley-Stevenson, R.P.</au><au>Smith, P.N.</au><au>Pain, C.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable angular adaptivity for Boltzmann transport</atitle><jtitle>Journal of computational physics</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>406</volume><spage>109124</spage><pages>109124-</pages><artnum>109124</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>This paper describes an angular adaptivity algorithm for Boltzmann transport applications which for the first time shows evidence of O(n) scaling in both runtime and memory usage, where n is the number of adapted angles. This adaptivity uses Haar wavelets, which perform structured h-adaptivity built on top of a hierarchical P0 FEM discretisation of a 2D angular domain, allowing different anisotropic angular resolution to be applied across space/energy. These wavelets can be mapped back to their underlying P0 space scalably, allowing traditional DG-sweep algorithms if desired. Instead we build a spatial discretisation on unstructured grids designed to use less memory than competing alternatives in general applications and construct a compatible matrix-free multigrid method which can handle our adapted angular discretisation. Fixed angular refinement, along with regular and goal-based error metrics are shown in three example problems taken from neutronics/radiative transfer applications. •Shows evidence of scalable adaptivity in runtime/memory up to 15 levels of refinement.•Produces angular discretisation with solid angle of 10−9.•Two problems shown would take 1013-1014 DOFs to resolve with our Haar discretisation if adaptivity were not used.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2019.109124</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2020-04, Vol.406, p.109124, Article 109124
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2441884677
source Elsevier ScienceDirect Journals
subjects Algorithms
Angular adaptivity
Angular resolution
Boltzmann transport
Computational physics
Discretization
Fast Wavelet Transform
Goal based
Haar wavelets
Radiative transfer
Unstructured grids (mathematics)
title Scalable angular adaptivity for Boltzmann transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20angular%20adaptivity%20for%20Boltzmann%20transport&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Dargaville,%20S.&rft.date=2020-04-01&rft.volume=406&rft.spage=109124&rft.pages=109124-&rft.artnum=109124&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2019.109124&rft_dat=%3Cproquest_cross%3E2441884677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441884677&rft_id=info:pmid/&rft_els_id=S0021999119308290&rfr_iscdi=true