A method for calculating low-temperature stress-strain curves of austenitic stainless steels
•Similar characteristics are found for different austenitic stainless steels at 77–293 K.•Empirical relations between low-temperature material model parameters and mechanical properties are founded.•A calculating method for low-temperature stress-stain curves of austenitic stainless steels is propos...
Gespeichert in:
Veröffentlicht in: | Cryogenics (Guildford) 2020-04, Vol.107, p.103059-17, Article 103059 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 103059 |
container_title | Cryogenics (Guildford) |
container_volume | 107 |
creator | Ding, Huiming Wu, Yingzhe Lu, Qunjie Zheng, Jinyang |
description | •Similar characteristics are found for different austenitic stainless steels at 77–293 K.•Empirical relations between low-temperature material model parameters and mechanical properties are founded.•A calculating method for low-temperature stress-stain curves of austenitic stainless steels is proposed.
Low-temperature stress-strain curves of austenitic stainless steels are essential for cryogenic pressure vessels’ elastic-plastic stress analysis. But, the method that how to get the low-temperature stress-strain curves is still missing in the current pressure vessel standards. To resolve this problem, related work is carried out based on 351 sets of tensile data of 15 austenitic stainless steels. Similar characteristics of low-temperature stress-strain curves in the phase composition, martensitic transformation and curve shape are found. Thus, the same low-temperature material model can be adopted for different austenitic stainless steels. Furthermore, the empirical relations between low-temperature material model parameters and mechanical properties (Rp0.2, Rm and A) are founded. Finally, a calculating method for low-temperature stress-stain curves of austenitic stainless steels is proposed based on the empirical relations and low-temperature material model. Compared with experimental curves, the calculated stress-strain curves show similar shape characteristics and is also of uniqueness and conservation. This is of important significance to the light-weight design of cryogenic pressure vessels. |
doi_str_mv | 10.1016/j.cryogenics.2020.103059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441589116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011227519303455</els_id><sourcerecordid>2441589116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-465eca617eb9cf1eae5501adc6db38bb43449b57b4512700b011056b99132c2e3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKvfIeB5a5JNsrvHWvwHBS96E0KSna1ZtpuaZCv99qZU8OhpHjO_meE9hDAlC0qovOsXNhz8BkZn44IRdmyXRDRnaEbrqikYK8U5mhFCadaVuERXMfaEEM4km6GPJd5C-vQt7nzAVg92GnRy4wYP_rtIsN1B0GkKgGMKEGORi3YjtlPYQ8S-w3qKKX9PzmYkj4ZMZQUwxGt00ekhws1vnaP3x4e31XOxfn16WS3XhS25TAWXAqyWtALT2I6CBiEI1a2VrSlrY3jJeWNEZbigrCLEZC9ESNM0tGSWQTlHt6e7u-C_JohJ9X4KY36pGOdU1A2lMlP1ibLBxxigU7vgtjocFCXqmKXq1V-W6pilOmWZV-9Pq9kU7B0EFa2D0ULrAtikWu_-P_ID2G6DoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441589116</pqid></control><display><type>article</type><title>A method for calculating low-temperature stress-strain curves of austenitic stainless steels</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ding, Huiming ; Wu, Yingzhe ; Lu, Qunjie ; Zheng, Jinyang</creator><creatorcontrib>Ding, Huiming ; Wu, Yingzhe ; Lu, Qunjie ; Zheng, Jinyang</creatorcontrib><description>•Similar characteristics are found for different austenitic stainless steels at 77–293 K.•Empirical relations between low-temperature material model parameters and mechanical properties are founded.•A calculating method for low-temperature stress-stain curves of austenitic stainless steels is proposed.
Low-temperature stress-strain curves of austenitic stainless steels are essential for cryogenic pressure vessels’ elastic-plastic stress analysis. But, the method that how to get the low-temperature stress-strain curves is still missing in the current pressure vessel standards. To resolve this problem, related work is carried out based on 351 sets of tensile data of 15 austenitic stainless steels. Similar characteristics of low-temperature stress-strain curves in the phase composition, martensitic transformation and curve shape are found. Thus, the same low-temperature material model can be adopted for different austenitic stainless steels. Furthermore, the empirical relations between low-temperature material model parameters and mechanical properties (Rp0.2, Rm and A) are founded. Finally, a calculating method for low-temperature stress-stain curves of austenitic stainless steels is proposed based on the empirical relations and low-temperature material model. Compared with experimental curves, the calculated stress-strain curves show similar shape characteristics and is also of uniqueness and conservation. This is of important significance to the light-weight design of cryogenic pressure vessels.</description><identifier>ISSN: 0011-2275</identifier><identifier>EISSN: 1879-2235</identifier><identifier>DOI: 10.1016/j.cryogenics.2020.103059</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Austenitic stainless steels ; Cryogenic pressure vessel ; Elastic analysis ; Elastic-plastic stress analysis ; Empirical analysis ; Low temperature ; Low-temperature stress-stain curves ; Martensitic transformation ; Martensitic transformations ; Mechanical properties ; Phase composition ; Phase transitions ; Pressure vessel design ; Pressure vessels ; Stainless steel ; Stress analysis ; Stress-strain curves ; Stress-strain relationships ; Weight reduction</subject><ispartof>Cryogenics (Guildford), 2020-04, Vol.107, p.103059-17, Article 103059</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-465eca617eb9cf1eae5501adc6db38bb43449b57b4512700b011056b99132c2e3</citedby><cites>FETCH-LOGICAL-c346t-465eca617eb9cf1eae5501adc6db38bb43449b57b4512700b011056b99132c2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cryogenics.2020.103059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ding, Huiming</creatorcontrib><creatorcontrib>Wu, Yingzhe</creatorcontrib><creatorcontrib>Lu, Qunjie</creatorcontrib><creatorcontrib>Zheng, Jinyang</creatorcontrib><title>A method for calculating low-temperature stress-strain curves of austenitic stainless steels</title><title>Cryogenics (Guildford)</title><description>•Similar characteristics are found for different austenitic stainless steels at 77–293 K.•Empirical relations between low-temperature material model parameters and mechanical properties are founded.•A calculating method for low-temperature stress-stain curves of austenitic stainless steels is proposed.
Low-temperature stress-strain curves of austenitic stainless steels are essential for cryogenic pressure vessels’ elastic-plastic stress analysis. But, the method that how to get the low-temperature stress-strain curves is still missing in the current pressure vessel standards. To resolve this problem, related work is carried out based on 351 sets of tensile data of 15 austenitic stainless steels. Similar characteristics of low-temperature stress-strain curves in the phase composition, martensitic transformation and curve shape are found. Thus, the same low-temperature material model can be adopted for different austenitic stainless steels. Furthermore, the empirical relations between low-temperature material model parameters and mechanical properties (Rp0.2, Rm and A) are founded. Finally, a calculating method for low-temperature stress-stain curves of austenitic stainless steels is proposed based on the empirical relations and low-temperature material model. Compared with experimental curves, the calculated stress-strain curves show similar shape characteristics and is also of uniqueness and conservation. This is of important significance to the light-weight design of cryogenic pressure vessels.</description><subject>Austenitic stainless steels</subject><subject>Cryogenic pressure vessel</subject><subject>Elastic analysis</subject><subject>Elastic-plastic stress analysis</subject><subject>Empirical analysis</subject><subject>Low temperature</subject><subject>Low-temperature stress-stain curves</subject><subject>Martensitic transformation</subject><subject>Martensitic transformations</subject><subject>Mechanical properties</subject><subject>Phase composition</subject><subject>Phase transitions</subject><subject>Pressure vessel design</subject><subject>Pressure vessels</subject><subject>Stainless steel</subject><subject>Stress analysis</subject><subject>Stress-strain curves</subject><subject>Stress-strain relationships</subject><subject>Weight reduction</subject><issn>0011-2275</issn><issn>1879-2235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKvfIeB5a5JNsrvHWvwHBS96E0KSna1ZtpuaZCv99qZU8OhpHjO_meE9hDAlC0qovOsXNhz8BkZn44IRdmyXRDRnaEbrqikYK8U5mhFCadaVuERXMfaEEM4km6GPJd5C-vQt7nzAVg92GnRy4wYP_rtIsN1B0GkKgGMKEGORi3YjtlPYQ8S-w3qKKX9PzmYkj4ZMZQUwxGt00ekhws1vnaP3x4e31XOxfn16WS3XhS25TAWXAqyWtALT2I6CBiEI1a2VrSlrY3jJeWNEZbigrCLEZC9ESNM0tGSWQTlHt6e7u-C_JohJ9X4KY36pGOdU1A2lMlP1ibLBxxigU7vgtjocFCXqmKXq1V-W6pilOmWZV-9Pq9kU7B0EFa2D0ULrAtikWu_-P_ID2G6DoQ</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Ding, Huiming</creator><creator>Wu, Yingzhe</creator><creator>Lu, Qunjie</creator><creator>Zheng, Jinyang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202004</creationdate><title>A method for calculating low-temperature stress-strain curves of austenitic stainless steels</title><author>Ding, Huiming ; Wu, Yingzhe ; Lu, Qunjie ; Zheng, Jinyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-465eca617eb9cf1eae5501adc6db38bb43449b57b4512700b011056b99132c2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Austenitic stainless steels</topic><topic>Cryogenic pressure vessel</topic><topic>Elastic analysis</topic><topic>Elastic-plastic stress analysis</topic><topic>Empirical analysis</topic><topic>Low temperature</topic><topic>Low-temperature stress-stain curves</topic><topic>Martensitic transformation</topic><topic>Martensitic transformations</topic><topic>Mechanical properties</topic><topic>Phase composition</topic><topic>Phase transitions</topic><topic>Pressure vessel design</topic><topic>Pressure vessels</topic><topic>Stainless steel</topic><topic>Stress analysis</topic><topic>Stress-strain curves</topic><topic>Stress-strain relationships</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Huiming</creatorcontrib><creatorcontrib>Wu, Yingzhe</creatorcontrib><creatorcontrib>Lu, Qunjie</creatorcontrib><creatorcontrib>Zheng, Jinyang</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Cryogenics (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Huiming</au><au>Wu, Yingzhe</au><au>Lu, Qunjie</au><au>Zheng, Jinyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for calculating low-temperature stress-strain curves of austenitic stainless steels</atitle><jtitle>Cryogenics (Guildford)</jtitle><date>2020-04</date><risdate>2020</risdate><volume>107</volume><spage>103059</spage><epage>17</epage><pages>103059-17</pages><artnum>103059</artnum><issn>0011-2275</issn><eissn>1879-2235</eissn><abstract>•Similar characteristics are found for different austenitic stainless steels at 77–293 K.•Empirical relations between low-temperature material model parameters and mechanical properties are founded.•A calculating method for low-temperature stress-stain curves of austenitic stainless steels is proposed.
Low-temperature stress-strain curves of austenitic stainless steels are essential for cryogenic pressure vessels’ elastic-plastic stress analysis. But, the method that how to get the low-temperature stress-strain curves is still missing in the current pressure vessel standards. To resolve this problem, related work is carried out based on 351 sets of tensile data of 15 austenitic stainless steels. Similar characteristics of low-temperature stress-strain curves in the phase composition, martensitic transformation and curve shape are found. Thus, the same low-temperature material model can be adopted for different austenitic stainless steels. Furthermore, the empirical relations between low-temperature material model parameters and mechanical properties (Rp0.2, Rm and A) are founded. Finally, a calculating method for low-temperature stress-stain curves of austenitic stainless steels is proposed based on the empirical relations and low-temperature material model. Compared with experimental curves, the calculated stress-strain curves show similar shape characteristics and is also of uniqueness and conservation. This is of important significance to the light-weight design of cryogenic pressure vessels.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cryogenics.2020.103059</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-2275 |
ispartof | Cryogenics (Guildford), 2020-04, Vol.107, p.103059-17, Article 103059 |
issn | 0011-2275 1879-2235 |
language | eng |
recordid | cdi_proquest_journals_2441589116 |
source | Access via ScienceDirect (Elsevier) |
subjects | Austenitic stainless steels Cryogenic pressure vessel Elastic analysis Elastic-plastic stress analysis Empirical analysis Low temperature Low-temperature stress-stain curves Martensitic transformation Martensitic transformations Mechanical properties Phase composition Phase transitions Pressure vessel design Pressure vessels Stainless steel Stress analysis Stress-strain curves Stress-strain relationships Weight reduction |
title | A method for calculating low-temperature stress-strain curves of austenitic stainless steels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20calculating%20low-temperature%20stress-strain%20curves%20of%20austenitic%20stainless%20steels&rft.jtitle=Cryogenics%20(Guildford)&rft.au=Ding,%20Huiming&rft.date=2020-04&rft.volume=107&rft.spage=103059&rft.epage=17&rft.pages=103059-17&rft.artnum=103059&rft.issn=0011-2275&rft.eissn=1879-2235&rft_id=info:doi/10.1016/j.cryogenics.2020.103059&rft_dat=%3Cproquest_cross%3E2441589116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441589116&rft_id=info:pmid/&rft_els_id=S0011227519303455&rfr_iscdi=true |