A method for calculating low-temperature stress-strain curves of austenitic stainless steels

•Similar characteristics are found for different austenitic stainless steels at 77–293 K.•Empirical relations between low-temperature material model parameters and mechanical properties are founded.•A calculating method for low-temperature stress-stain curves of austenitic stainless steels is propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryogenics (Guildford) 2020-04, Vol.107, p.103059-17, Article 103059
Hauptverfasser: Ding, Huiming, Wu, Yingzhe, Lu, Qunjie, Zheng, Jinyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue
container_start_page 103059
container_title Cryogenics (Guildford)
container_volume 107
creator Ding, Huiming
Wu, Yingzhe
Lu, Qunjie
Zheng, Jinyang
description •Similar characteristics are found for different austenitic stainless steels at 77–293 K.•Empirical relations between low-temperature material model parameters and mechanical properties are founded.•A calculating method for low-temperature stress-stain curves of austenitic stainless steels is proposed. Low-temperature stress-strain curves of austenitic stainless steels are essential for cryogenic pressure vessels’ elastic-plastic stress analysis. But, the method that how to get the low-temperature stress-strain curves is still missing in the current pressure vessel standards. To resolve this problem, related work is carried out based on 351 sets of tensile data of 15 austenitic stainless steels. Similar characteristics of low-temperature stress-strain curves in the phase composition, martensitic transformation and curve shape are found. Thus, the same low-temperature material model can be adopted for different austenitic stainless steels. Furthermore, the empirical relations between low-temperature material model parameters and mechanical properties (Rp0.2, Rm and A) are founded. Finally, a calculating method for low-temperature stress-stain curves of austenitic stainless steels is proposed based on the empirical relations and low-temperature material model. Compared with experimental curves, the calculated stress-strain curves show similar shape characteristics and is also of uniqueness and conservation. This is of important significance to the light-weight design of cryogenic pressure vessels.
doi_str_mv 10.1016/j.cryogenics.2020.103059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441589116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011227519303455</els_id><sourcerecordid>2441589116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-465eca617eb9cf1eae5501adc6db38bb43449b57b4512700b011056b99132c2e3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKvfIeB5a5JNsrvHWvwHBS96E0KSna1ZtpuaZCv99qZU8OhpHjO_meE9hDAlC0qovOsXNhz8BkZn44IRdmyXRDRnaEbrqikYK8U5mhFCadaVuERXMfaEEM4km6GPJd5C-vQt7nzAVg92GnRy4wYP_rtIsN1B0GkKgGMKEGORi3YjtlPYQ8S-w3qKKX9PzmYkj4ZMZQUwxGt00ekhws1vnaP3x4e31XOxfn16WS3XhS25TAWXAqyWtALT2I6CBiEI1a2VrSlrY3jJeWNEZbigrCLEZC9ESNM0tGSWQTlHt6e7u-C_JohJ9X4KY36pGOdU1A2lMlP1ibLBxxigU7vgtjocFCXqmKXq1V-W6pilOmWZV-9Pq9kU7B0EFa2D0ULrAtikWu_-P_ID2G6DoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441589116</pqid></control><display><type>article</type><title>A method for calculating low-temperature stress-strain curves of austenitic stainless steels</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ding, Huiming ; Wu, Yingzhe ; Lu, Qunjie ; Zheng, Jinyang</creator><creatorcontrib>Ding, Huiming ; Wu, Yingzhe ; Lu, Qunjie ; Zheng, Jinyang</creatorcontrib><description>•Similar characteristics are found for different austenitic stainless steels at 77–293 K.•Empirical relations between low-temperature material model parameters and mechanical properties are founded.•A calculating method for low-temperature stress-stain curves of austenitic stainless steels is proposed. Low-temperature stress-strain curves of austenitic stainless steels are essential for cryogenic pressure vessels’ elastic-plastic stress analysis. But, the method that how to get the low-temperature stress-strain curves is still missing in the current pressure vessel standards. To resolve this problem, related work is carried out based on 351 sets of tensile data of 15 austenitic stainless steels. Similar characteristics of low-temperature stress-strain curves in the phase composition, martensitic transformation and curve shape are found. Thus, the same low-temperature material model can be adopted for different austenitic stainless steels. Furthermore, the empirical relations between low-temperature material model parameters and mechanical properties (Rp0.2, Rm and A) are founded. Finally, a calculating method for low-temperature stress-stain curves of austenitic stainless steels is proposed based on the empirical relations and low-temperature material model. Compared with experimental curves, the calculated stress-strain curves show similar shape characteristics and is also of uniqueness and conservation. This is of important significance to the light-weight design of cryogenic pressure vessels.</description><identifier>ISSN: 0011-2275</identifier><identifier>EISSN: 1879-2235</identifier><identifier>DOI: 10.1016/j.cryogenics.2020.103059</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Austenitic stainless steels ; Cryogenic pressure vessel ; Elastic analysis ; Elastic-plastic stress analysis ; Empirical analysis ; Low temperature ; Low-temperature stress-stain curves ; Martensitic transformation ; Martensitic transformations ; Mechanical properties ; Phase composition ; Phase transitions ; Pressure vessel design ; Pressure vessels ; Stainless steel ; Stress analysis ; Stress-strain curves ; Stress-strain relationships ; Weight reduction</subject><ispartof>Cryogenics (Guildford), 2020-04, Vol.107, p.103059-17, Article 103059</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-465eca617eb9cf1eae5501adc6db38bb43449b57b4512700b011056b99132c2e3</citedby><cites>FETCH-LOGICAL-c346t-465eca617eb9cf1eae5501adc6db38bb43449b57b4512700b011056b99132c2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cryogenics.2020.103059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ding, Huiming</creatorcontrib><creatorcontrib>Wu, Yingzhe</creatorcontrib><creatorcontrib>Lu, Qunjie</creatorcontrib><creatorcontrib>Zheng, Jinyang</creatorcontrib><title>A method for calculating low-temperature stress-strain curves of austenitic stainless steels</title><title>Cryogenics (Guildford)</title><description>•Similar characteristics are found for different austenitic stainless steels at 77–293 K.•Empirical relations between low-temperature material model parameters and mechanical properties are founded.•A calculating method for low-temperature stress-stain curves of austenitic stainless steels is proposed. Low-temperature stress-strain curves of austenitic stainless steels are essential for cryogenic pressure vessels’ elastic-plastic stress analysis. But, the method that how to get the low-temperature stress-strain curves is still missing in the current pressure vessel standards. To resolve this problem, related work is carried out based on 351 sets of tensile data of 15 austenitic stainless steels. Similar characteristics of low-temperature stress-strain curves in the phase composition, martensitic transformation and curve shape are found. Thus, the same low-temperature material model can be adopted for different austenitic stainless steels. Furthermore, the empirical relations between low-temperature material model parameters and mechanical properties (Rp0.2, Rm and A) are founded. Finally, a calculating method for low-temperature stress-stain curves of austenitic stainless steels is proposed based on the empirical relations and low-temperature material model. Compared with experimental curves, the calculated stress-strain curves show similar shape characteristics and is also of uniqueness and conservation. This is of important significance to the light-weight design of cryogenic pressure vessels.</description><subject>Austenitic stainless steels</subject><subject>Cryogenic pressure vessel</subject><subject>Elastic analysis</subject><subject>Elastic-plastic stress analysis</subject><subject>Empirical analysis</subject><subject>Low temperature</subject><subject>Low-temperature stress-stain curves</subject><subject>Martensitic transformation</subject><subject>Martensitic transformations</subject><subject>Mechanical properties</subject><subject>Phase composition</subject><subject>Phase transitions</subject><subject>Pressure vessel design</subject><subject>Pressure vessels</subject><subject>Stainless steel</subject><subject>Stress analysis</subject><subject>Stress-strain curves</subject><subject>Stress-strain relationships</subject><subject>Weight reduction</subject><issn>0011-2275</issn><issn>1879-2235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKvfIeB5a5JNsrvHWvwHBS96E0KSna1ZtpuaZCv99qZU8OhpHjO_meE9hDAlC0qovOsXNhz8BkZn44IRdmyXRDRnaEbrqikYK8U5mhFCadaVuERXMfaEEM4km6GPJd5C-vQt7nzAVg92GnRy4wYP_rtIsN1B0GkKgGMKEGORi3YjtlPYQ8S-w3qKKX9PzmYkj4ZMZQUwxGt00ekhws1vnaP3x4e31XOxfn16WS3XhS25TAWXAqyWtALT2I6CBiEI1a2VrSlrY3jJeWNEZbigrCLEZC9ESNM0tGSWQTlHt6e7u-C_JohJ9X4KY36pGOdU1A2lMlP1ibLBxxigU7vgtjocFCXqmKXq1V-W6pilOmWZV-9Pq9kU7B0EFa2D0ULrAtikWu_-P_ID2G6DoQ</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Ding, Huiming</creator><creator>Wu, Yingzhe</creator><creator>Lu, Qunjie</creator><creator>Zheng, Jinyang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202004</creationdate><title>A method for calculating low-temperature stress-strain curves of austenitic stainless steels</title><author>Ding, Huiming ; Wu, Yingzhe ; Lu, Qunjie ; Zheng, Jinyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-465eca617eb9cf1eae5501adc6db38bb43449b57b4512700b011056b99132c2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Austenitic stainless steels</topic><topic>Cryogenic pressure vessel</topic><topic>Elastic analysis</topic><topic>Elastic-plastic stress analysis</topic><topic>Empirical analysis</topic><topic>Low temperature</topic><topic>Low-temperature stress-stain curves</topic><topic>Martensitic transformation</topic><topic>Martensitic transformations</topic><topic>Mechanical properties</topic><topic>Phase composition</topic><topic>Phase transitions</topic><topic>Pressure vessel design</topic><topic>Pressure vessels</topic><topic>Stainless steel</topic><topic>Stress analysis</topic><topic>Stress-strain curves</topic><topic>Stress-strain relationships</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Huiming</creatorcontrib><creatorcontrib>Wu, Yingzhe</creatorcontrib><creatorcontrib>Lu, Qunjie</creatorcontrib><creatorcontrib>Zheng, Jinyang</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Cryogenics (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Huiming</au><au>Wu, Yingzhe</au><au>Lu, Qunjie</au><au>Zheng, Jinyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for calculating low-temperature stress-strain curves of austenitic stainless steels</atitle><jtitle>Cryogenics (Guildford)</jtitle><date>2020-04</date><risdate>2020</risdate><volume>107</volume><spage>103059</spage><epage>17</epage><pages>103059-17</pages><artnum>103059</artnum><issn>0011-2275</issn><eissn>1879-2235</eissn><abstract>•Similar characteristics are found for different austenitic stainless steels at 77–293 K.•Empirical relations between low-temperature material model parameters and mechanical properties are founded.•A calculating method for low-temperature stress-stain curves of austenitic stainless steels is proposed. Low-temperature stress-strain curves of austenitic stainless steels are essential for cryogenic pressure vessels’ elastic-plastic stress analysis. But, the method that how to get the low-temperature stress-strain curves is still missing in the current pressure vessel standards. To resolve this problem, related work is carried out based on 351 sets of tensile data of 15 austenitic stainless steels. Similar characteristics of low-temperature stress-strain curves in the phase composition, martensitic transformation and curve shape are found. Thus, the same low-temperature material model can be adopted for different austenitic stainless steels. Furthermore, the empirical relations between low-temperature material model parameters and mechanical properties (Rp0.2, Rm and A) are founded. Finally, a calculating method for low-temperature stress-stain curves of austenitic stainless steels is proposed based on the empirical relations and low-temperature material model. Compared with experimental curves, the calculated stress-strain curves show similar shape characteristics and is also of uniqueness and conservation. This is of important significance to the light-weight design of cryogenic pressure vessels.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cryogenics.2020.103059</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-2275
ispartof Cryogenics (Guildford), 2020-04, Vol.107, p.103059-17, Article 103059
issn 0011-2275
1879-2235
language eng
recordid cdi_proquest_journals_2441589116
source Access via ScienceDirect (Elsevier)
subjects Austenitic stainless steels
Cryogenic pressure vessel
Elastic analysis
Elastic-plastic stress analysis
Empirical analysis
Low temperature
Low-temperature stress-stain curves
Martensitic transformation
Martensitic transformations
Mechanical properties
Phase composition
Phase transitions
Pressure vessel design
Pressure vessels
Stainless steel
Stress analysis
Stress-strain curves
Stress-strain relationships
Weight reduction
title A method for calculating low-temperature stress-strain curves of austenitic stainless steels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20calculating%20low-temperature%20stress-strain%20curves%20of%20austenitic%20stainless%20steels&rft.jtitle=Cryogenics%20(Guildford)&rft.au=Ding,%20Huiming&rft.date=2020-04&rft.volume=107&rft.spage=103059&rft.epage=17&rft.pages=103059-17&rft.artnum=103059&rft.issn=0011-2275&rft.eissn=1879-2235&rft_id=info:doi/10.1016/j.cryogenics.2020.103059&rft_dat=%3Cproquest_cross%3E2441589116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441589116&rft_id=info:pmid/&rft_els_id=S0011227519303455&rfr_iscdi=true