Enhanced high-voltage cycling stability of LiNi0.5Co0.2Mn0.3O2 based on stable Li+-conductive ceramic Li6.5La3Zr1.5Ta0.5O12 nano cladding layer

Enhancing the cycling stability of conventional LiNixCoyMn1-x-yO2 cathode materials under high cut-off voltage (>4.3 V) is an efficient route for the fabrication of ternary layered lithium-ion batteries (LIBs) with superior capacity. A garnet ceramic Li6.5La3Zr1.5Ta0.5O12 (LLZTO) is used as a fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2020-07, Vol.349, p.136251, Article 136251
Hauptverfasser: Liu, Ying, Xu, Ning, Cheng, Zhiyan, Xie, Huan, Ma, Yu, Wu, Mengtao, Zhang, Yufei, Chen, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 136251
container_title Electrochimica acta
container_volume 349
creator Liu, Ying
Xu, Ning
Cheng, Zhiyan
Xie, Huan
Ma, Yu
Wu, Mengtao
Zhang, Yufei
Chen, Li
description Enhancing the cycling stability of conventional LiNixCoyMn1-x-yO2 cathode materials under high cut-off voltage (>4.3 V) is an efficient route for the fabrication of ternary layered lithium-ion batteries (LIBs) with superior capacity. A garnet ceramic Li6.5La3Zr1.5Ta0.5O12 (LLZTO) is used as a functional nano-cladding layer on LiNi0.5Co0.2Mn0.3O2 (NCM) particle surface to endow NCM with improved reversible capacities and cycling stabilities. The NCM modified with 2 wt % LLZTO delivered the highest discharge capacity (146.6 mA h g−1, 88.5% capacity retention) at 1 C between 2.7 and 4.5 V after 100 cycles, and its rate capability was also significantly enhanced to 112.9 mA h g−1 at 5 C compared with 96.2 mA h g−1 for the unmodified NCM. These improved properties can be ascribed to the LLZTO cladded layer, the chemical stability of which strengthens the stability of the interface between NCM bulk and electrolyte, and the high Li+ conductivity of which accelerates the transport of Li+ through the three-dimensional channels. Due to the above inherent merits, the ceramic LLZTO is a promising material for stabilizing interfaces between the cathode and electrolyte and for optimizing the high-voltage cycling stability of other cathode materials for LIBs. •A ceramic Li6.5La3Zr1.5Ta0.5O12 nano-layer is cladded on NCM surface.•The cycling stability at high cut-off voltage (4.5 V) are greatly improved.•2 wt % LLZTO makes NCM the superior performance due to the high Li+ conductivity.
doi_str_mv 10.1016/j.electacta.2020.136251
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441576798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620306435</els_id><sourcerecordid>2441576798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-d5969f9878a593eb0c6a1d4e3b959b2e361c606e1c2c38e573d7e1606bbd6dc73</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKvP4IBLmTE_TWZmWUr9gdFu6sZNyCS3bco0qcm00KfwlU2tuBUuXDiccy73Q-iW4IJgIh7WBXSge5WmoJgmlQnKyRkakKpkOat4fY4GGBOWj0QlLtFVjGuMcSlKPEBfU7dSToPJVna5yve-69USMn3QnXXLLPaqtZ3tD5lfZI19s7jgE48L-upwwWY0a1VMWe9-nB0kz32uvTM73dt96oGgNlYnWRS8UewjkILPVWqZEZo55XymO2XM8VanDhCu0cVCdRFufvcQvT9O55PnvJk9vUzGTa4pr_rc8FrUi7oqK8VrBi3WQhEzAtbWvG4pMEG0wAKIpppVwEtmSiBJaVsjjC7ZEN2derfBf-4g9nLtd8Glk5KORoQnOnWVXOXJpYOPMcBCboPdqHCQBMsjfbmWf_Tlkb480U_J8SkJ6Ym9hSCjtnAEbUPyS-Ptvx3fQ7SPaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441576798</pqid></control><display><type>article</type><title>Enhanced high-voltage cycling stability of LiNi0.5Co0.2Mn0.3O2 based on stable Li+-conductive ceramic Li6.5La3Zr1.5Ta0.5O12 nano cladding layer</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Liu, Ying ; Xu, Ning ; Cheng, Zhiyan ; Xie, Huan ; Ma, Yu ; Wu, Mengtao ; Zhang, Yufei ; Chen, Li</creator><creatorcontrib>Liu, Ying ; Xu, Ning ; Cheng, Zhiyan ; Xie, Huan ; Ma, Yu ; Wu, Mengtao ; Zhang, Yufei ; Chen, Li</creatorcontrib><description>Enhancing the cycling stability of conventional LiNixCoyMn1-x-yO2 cathode materials under high cut-off voltage (&gt;4.3 V) is an efficient route for the fabrication of ternary layered lithium-ion batteries (LIBs) with superior capacity. A garnet ceramic Li6.5La3Zr1.5Ta0.5O12 (LLZTO) is used as a functional nano-cladding layer on LiNi0.5Co0.2Mn0.3O2 (NCM) particle surface to endow NCM with improved reversible capacities and cycling stabilities. The NCM modified with 2 wt % LLZTO delivered the highest discharge capacity (146.6 mA h g−1, 88.5% capacity retention) at 1 C between 2.7 and 4.5 V after 100 cycles, and its rate capability was also significantly enhanced to 112.9 mA h g−1 at 5 C compared with 96.2 mA h g−1 for the unmodified NCM. These improved properties can be ascribed to the LLZTO cladded layer, the chemical stability of which strengthens the stability of the interface between NCM bulk and electrolyte, and the high Li+ conductivity of which accelerates the transport of Li+ through the three-dimensional channels. Due to the above inherent merits, the ceramic LLZTO is a promising material for stabilizing interfaces between the cathode and electrolyte and for optimizing the high-voltage cycling stability of other cathode materials for LIBs. •A ceramic Li6.5La3Zr1.5Ta0.5O12 nano-layer is cladded on NCM surface.•The cycling stability at high cut-off voltage (4.5 V) are greatly improved.•2 wt % LLZTO makes NCM the superior performance due to the high Li+ conductivity.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.136251</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cathodes ; Ceramic Li6.5La3Zr1.5Ta0.5O12 ; Ceramics ; Cladding ; Electrode materials ; Electrolytes ; High voltages ; High-voltage ; Interface stability ; LiNi0.5Co0.2Mn0.3O2 ; Lithium ; Lithium-ion batteries ; Rechargeable batteries ; Surface modification</subject><ispartof>Electrochimica acta, 2020-07, Vol.349, p.136251, Article 136251</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 20, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-d5969f9878a593eb0c6a1d4e3b959b2e361c606e1c2c38e573d7e1606bbd6dc73</citedby><cites>FETCH-LOGICAL-c258t-d5969f9878a593eb0c6a1d4e3b959b2e361c606e1c2c38e573d7e1606bbd6dc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2020.136251$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Cheng, Zhiyan</creatorcontrib><creatorcontrib>Xie, Huan</creatorcontrib><creatorcontrib>Ma, Yu</creatorcontrib><creatorcontrib>Wu, Mengtao</creatorcontrib><creatorcontrib>Zhang, Yufei</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><title>Enhanced high-voltage cycling stability of LiNi0.5Co0.2Mn0.3O2 based on stable Li+-conductive ceramic Li6.5La3Zr1.5Ta0.5O12 nano cladding layer</title><title>Electrochimica acta</title><description>Enhancing the cycling stability of conventional LiNixCoyMn1-x-yO2 cathode materials under high cut-off voltage (&gt;4.3 V) is an efficient route for the fabrication of ternary layered lithium-ion batteries (LIBs) with superior capacity. A garnet ceramic Li6.5La3Zr1.5Ta0.5O12 (LLZTO) is used as a functional nano-cladding layer on LiNi0.5Co0.2Mn0.3O2 (NCM) particle surface to endow NCM with improved reversible capacities and cycling stabilities. The NCM modified with 2 wt % LLZTO delivered the highest discharge capacity (146.6 mA h g−1, 88.5% capacity retention) at 1 C between 2.7 and 4.5 V after 100 cycles, and its rate capability was also significantly enhanced to 112.9 mA h g−1 at 5 C compared with 96.2 mA h g−1 for the unmodified NCM. These improved properties can be ascribed to the LLZTO cladded layer, the chemical stability of which strengthens the stability of the interface between NCM bulk and electrolyte, and the high Li+ conductivity of which accelerates the transport of Li+ through the three-dimensional channels. Due to the above inherent merits, the ceramic LLZTO is a promising material for stabilizing interfaces between the cathode and electrolyte and for optimizing the high-voltage cycling stability of other cathode materials for LIBs. •A ceramic Li6.5La3Zr1.5Ta0.5O12 nano-layer is cladded on NCM surface.•The cycling stability at high cut-off voltage (4.5 V) are greatly improved.•2 wt % LLZTO makes NCM the superior performance due to the high Li+ conductivity.</description><subject>Cathodes</subject><subject>Ceramic Li6.5La3Zr1.5Ta0.5O12</subject><subject>Ceramics</subject><subject>Cladding</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>High voltages</subject><subject>High-voltage</subject><subject>Interface stability</subject><subject>LiNi0.5Co0.2Mn0.3O2</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Rechargeable batteries</subject><subject>Surface modification</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKvP4IBLmTE_TWZmWUr9gdFu6sZNyCS3bco0qcm00KfwlU2tuBUuXDiccy73Q-iW4IJgIh7WBXSge5WmoJgmlQnKyRkakKpkOat4fY4GGBOWj0QlLtFVjGuMcSlKPEBfU7dSToPJVna5yve-69USMn3QnXXLLPaqtZ3tD5lfZI19s7jgE48L-upwwWY0a1VMWe9-nB0kz32uvTM73dt96oGgNlYnWRS8UewjkILPVWqZEZo55XymO2XM8VanDhCu0cVCdRFufvcQvT9O55PnvJk9vUzGTa4pr_rc8FrUi7oqK8VrBi3WQhEzAtbWvG4pMEG0wAKIpppVwEtmSiBJaVsjjC7ZEN2derfBf-4g9nLtd8Glk5KORoQnOnWVXOXJpYOPMcBCboPdqHCQBMsjfbmWf_Tlkb480U_J8SkJ6Ym9hSCjtnAEbUPyS-Ptvx3fQ7SPaQ</recordid><startdate>20200720</startdate><enddate>20200720</enddate><creator>Liu, Ying</creator><creator>Xu, Ning</creator><creator>Cheng, Zhiyan</creator><creator>Xie, Huan</creator><creator>Ma, Yu</creator><creator>Wu, Mengtao</creator><creator>Zhang, Yufei</creator><creator>Chen, Li</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200720</creationdate><title>Enhanced high-voltage cycling stability of LiNi0.5Co0.2Mn0.3O2 based on stable Li+-conductive ceramic Li6.5La3Zr1.5Ta0.5O12 nano cladding layer</title><author>Liu, Ying ; Xu, Ning ; Cheng, Zhiyan ; Xie, Huan ; Ma, Yu ; Wu, Mengtao ; Zhang, Yufei ; Chen, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-d5969f9878a593eb0c6a1d4e3b959b2e361c606e1c2c38e573d7e1606bbd6dc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cathodes</topic><topic>Ceramic Li6.5La3Zr1.5Ta0.5O12</topic><topic>Ceramics</topic><topic>Cladding</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>High voltages</topic><topic>High-voltage</topic><topic>Interface stability</topic><topic>LiNi0.5Co0.2Mn0.3O2</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Rechargeable batteries</topic><topic>Surface modification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Cheng, Zhiyan</creatorcontrib><creatorcontrib>Xie, Huan</creatorcontrib><creatorcontrib>Ma, Yu</creatorcontrib><creatorcontrib>Wu, Mengtao</creatorcontrib><creatorcontrib>Zhang, Yufei</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ying</au><au>Xu, Ning</au><au>Cheng, Zhiyan</au><au>Xie, Huan</au><au>Ma, Yu</au><au>Wu, Mengtao</au><au>Zhang, Yufei</au><au>Chen, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced high-voltage cycling stability of LiNi0.5Co0.2Mn0.3O2 based on stable Li+-conductive ceramic Li6.5La3Zr1.5Ta0.5O12 nano cladding layer</atitle><jtitle>Electrochimica acta</jtitle><date>2020-07-20</date><risdate>2020</risdate><volume>349</volume><spage>136251</spage><pages>136251-</pages><artnum>136251</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Enhancing the cycling stability of conventional LiNixCoyMn1-x-yO2 cathode materials under high cut-off voltage (&gt;4.3 V) is an efficient route for the fabrication of ternary layered lithium-ion batteries (LIBs) with superior capacity. A garnet ceramic Li6.5La3Zr1.5Ta0.5O12 (LLZTO) is used as a functional nano-cladding layer on LiNi0.5Co0.2Mn0.3O2 (NCM) particle surface to endow NCM with improved reversible capacities and cycling stabilities. The NCM modified with 2 wt % LLZTO delivered the highest discharge capacity (146.6 mA h g−1, 88.5% capacity retention) at 1 C between 2.7 and 4.5 V after 100 cycles, and its rate capability was also significantly enhanced to 112.9 mA h g−1 at 5 C compared with 96.2 mA h g−1 for the unmodified NCM. These improved properties can be ascribed to the LLZTO cladded layer, the chemical stability of which strengthens the stability of the interface between NCM bulk and electrolyte, and the high Li+ conductivity of which accelerates the transport of Li+ through the three-dimensional channels. Due to the above inherent merits, the ceramic LLZTO is a promising material for stabilizing interfaces between the cathode and electrolyte and for optimizing the high-voltage cycling stability of other cathode materials for LIBs. •A ceramic Li6.5La3Zr1.5Ta0.5O12 nano-layer is cladded on NCM surface.•The cycling stability at high cut-off voltage (4.5 V) are greatly improved.•2 wt % LLZTO makes NCM the superior performance due to the high Li+ conductivity.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.136251</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2020-07, Vol.349, p.136251, Article 136251
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2441576798
source ScienceDirect Journals (5 years ago - present)
subjects Cathodes
Ceramic Li6.5La3Zr1.5Ta0.5O12
Ceramics
Cladding
Electrode materials
Electrolytes
High voltages
High-voltage
Interface stability
LiNi0.5Co0.2Mn0.3O2
Lithium
Lithium-ion batteries
Rechargeable batteries
Surface modification
title Enhanced high-voltage cycling stability of LiNi0.5Co0.2Mn0.3O2 based on stable Li+-conductive ceramic Li6.5La3Zr1.5Ta0.5O12 nano cladding layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20high-voltage%20cycling%20stability%20of%20LiNi0.5Co0.2Mn0.3O2%20based%20on%20stable%20Li+-conductive%20ceramic%20Li6.5La3Zr1.5Ta0.5O12%20nano%20cladding%20layer&rft.jtitle=Electrochimica%20acta&rft.au=Liu,%20Ying&rft.date=2020-07-20&rft.volume=349&rft.spage=136251&rft.pages=136251-&rft.artnum=136251&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.136251&rft_dat=%3Cproquest_cross%3E2441576798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441576798&rft_id=info:pmid/&rft_els_id=S0013468620306435&rfr_iscdi=true