Enhanced high-voltage cycling stability of LiNi0.5Co0.2Mn0.3O2 based on stable Li+-conductive ceramic Li6.5La3Zr1.5Ta0.5O12 nano cladding layer
Enhancing the cycling stability of conventional LiNixCoyMn1-x-yO2 cathode materials under high cut-off voltage (>4.3 V) is an efficient route for the fabrication of ternary layered lithium-ion batteries (LIBs) with superior capacity. A garnet ceramic Li6.5La3Zr1.5Ta0.5O12 (LLZTO) is used as a fun...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2020-07, Vol.349, p.136251, Article 136251 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 136251 |
container_title | Electrochimica acta |
container_volume | 349 |
creator | Liu, Ying Xu, Ning Cheng, Zhiyan Xie, Huan Ma, Yu Wu, Mengtao Zhang, Yufei Chen, Li |
description | Enhancing the cycling stability of conventional LiNixCoyMn1-x-yO2 cathode materials under high cut-off voltage (>4.3 V) is an efficient route for the fabrication of ternary layered lithium-ion batteries (LIBs) with superior capacity. A garnet ceramic Li6.5La3Zr1.5Ta0.5O12 (LLZTO) is used as a functional nano-cladding layer on LiNi0.5Co0.2Mn0.3O2 (NCM) particle surface to endow NCM with improved reversible capacities and cycling stabilities. The NCM modified with 2 wt % LLZTO delivered the highest discharge capacity (146.6 mA h g−1, 88.5% capacity retention) at 1 C between 2.7 and 4.5 V after 100 cycles, and its rate capability was also significantly enhanced to 112.9 mA h g−1 at 5 C compared with 96.2 mA h g−1 for the unmodified NCM. These improved properties can be ascribed to the LLZTO cladded layer, the chemical stability of which strengthens the stability of the interface between NCM bulk and electrolyte, and the high Li+ conductivity of which accelerates the transport of Li+ through the three-dimensional channels. Due to the above inherent merits, the ceramic LLZTO is a promising material for stabilizing interfaces between the cathode and electrolyte and for optimizing the high-voltage cycling stability of other cathode materials for LIBs.
•A ceramic Li6.5La3Zr1.5Ta0.5O12 nano-layer is cladded on NCM surface.•The cycling stability at high cut-off voltage (4.5 V) are greatly improved.•2 wt % LLZTO makes NCM the superior performance due to the high Li+ conductivity. |
doi_str_mv | 10.1016/j.electacta.2020.136251 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441576798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620306435</els_id><sourcerecordid>2441576798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-d5969f9878a593eb0c6a1d4e3b959b2e361c606e1c2c38e573d7e1606bbd6dc73</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKvP4IBLmTE_TWZmWUr9gdFu6sZNyCS3bco0qcm00KfwlU2tuBUuXDiccy73Q-iW4IJgIh7WBXSge5WmoJgmlQnKyRkakKpkOat4fY4GGBOWj0QlLtFVjGuMcSlKPEBfU7dSToPJVna5yve-69USMn3QnXXLLPaqtZ3tD5lfZI19s7jgE48L-upwwWY0a1VMWe9-nB0kz32uvTM73dt96oGgNlYnWRS8UewjkILPVWqZEZo55XymO2XM8VanDhCu0cVCdRFufvcQvT9O55PnvJk9vUzGTa4pr_rc8FrUi7oqK8VrBi3WQhEzAtbWvG4pMEG0wAKIpppVwEtmSiBJaVsjjC7ZEN2derfBf-4g9nLtd8Glk5KORoQnOnWVXOXJpYOPMcBCboPdqHCQBMsjfbmWf_Tlkb480U_J8SkJ6Ym9hSCjtnAEbUPyS-Ptvx3fQ7SPaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441576798</pqid></control><display><type>article</type><title>Enhanced high-voltage cycling stability of LiNi0.5Co0.2Mn0.3O2 based on stable Li+-conductive ceramic Li6.5La3Zr1.5Ta0.5O12 nano cladding layer</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Liu, Ying ; Xu, Ning ; Cheng, Zhiyan ; Xie, Huan ; Ma, Yu ; Wu, Mengtao ; Zhang, Yufei ; Chen, Li</creator><creatorcontrib>Liu, Ying ; Xu, Ning ; Cheng, Zhiyan ; Xie, Huan ; Ma, Yu ; Wu, Mengtao ; Zhang, Yufei ; Chen, Li</creatorcontrib><description>Enhancing the cycling stability of conventional LiNixCoyMn1-x-yO2 cathode materials under high cut-off voltage (>4.3 V) is an efficient route for the fabrication of ternary layered lithium-ion batteries (LIBs) with superior capacity. A garnet ceramic Li6.5La3Zr1.5Ta0.5O12 (LLZTO) is used as a functional nano-cladding layer on LiNi0.5Co0.2Mn0.3O2 (NCM) particle surface to endow NCM with improved reversible capacities and cycling stabilities. The NCM modified with 2 wt % LLZTO delivered the highest discharge capacity (146.6 mA h g−1, 88.5% capacity retention) at 1 C between 2.7 and 4.5 V after 100 cycles, and its rate capability was also significantly enhanced to 112.9 mA h g−1 at 5 C compared with 96.2 mA h g−1 for the unmodified NCM. These improved properties can be ascribed to the LLZTO cladded layer, the chemical stability of which strengthens the stability of the interface between NCM bulk and electrolyte, and the high Li+ conductivity of which accelerates the transport of Li+ through the three-dimensional channels. Due to the above inherent merits, the ceramic LLZTO is a promising material for stabilizing interfaces between the cathode and electrolyte and for optimizing the high-voltage cycling stability of other cathode materials for LIBs.
•A ceramic Li6.5La3Zr1.5Ta0.5O12 nano-layer is cladded on NCM surface.•The cycling stability at high cut-off voltage (4.5 V) are greatly improved.•2 wt % LLZTO makes NCM the superior performance due to the high Li+ conductivity.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.136251</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cathodes ; Ceramic Li6.5La3Zr1.5Ta0.5O12 ; Ceramics ; Cladding ; Electrode materials ; Electrolytes ; High voltages ; High-voltage ; Interface stability ; LiNi0.5Co0.2Mn0.3O2 ; Lithium ; Lithium-ion batteries ; Rechargeable batteries ; Surface modification</subject><ispartof>Electrochimica acta, 2020-07, Vol.349, p.136251, Article 136251</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 20, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-d5969f9878a593eb0c6a1d4e3b959b2e361c606e1c2c38e573d7e1606bbd6dc73</citedby><cites>FETCH-LOGICAL-c258t-d5969f9878a593eb0c6a1d4e3b959b2e361c606e1c2c38e573d7e1606bbd6dc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2020.136251$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Cheng, Zhiyan</creatorcontrib><creatorcontrib>Xie, Huan</creatorcontrib><creatorcontrib>Ma, Yu</creatorcontrib><creatorcontrib>Wu, Mengtao</creatorcontrib><creatorcontrib>Zhang, Yufei</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><title>Enhanced high-voltage cycling stability of LiNi0.5Co0.2Mn0.3O2 based on stable Li+-conductive ceramic Li6.5La3Zr1.5Ta0.5O12 nano cladding layer</title><title>Electrochimica acta</title><description>Enhancing the cycling stability of conventional LiNixCoyMn1-x-yO2 cathode materials under high cut-off voltage (>4.3 V) is an efficient route for the fabrication of ternary layered lithium-ion batteries (LIBs) with superior capacity. A garnet ceramic Li6.5La3Zr1.5Ta0.5O12 (LLZTO) is used as a functional nano-cladding layer on LiNi0.5Co0.2Mn0.3O2 (NCM) particle surface to endow NCM with improved reversible capacities and cycling stabilities. The NCM modified with 2 wt % LLZTO delivered the highest discharge capacity (146.6 mA h g−1, 88.5% capacity retention) at 1 C between 2.7 and 4.5 V after 100 cycles, and its rate capability was also significantly enhanced to 112.9 mA h g−1 at 5 C compared with 96.2 mA h g−1 for the unmodified NCM. These improved properties can be ascribed to the LLZTO cladded layer, the chemical stability of which strengthens the stability of the interface between NCM bulk and electrolyte, and the high Li+ conductivity of which accelerates the transport of Li+ through the three-dimensional channels. Due to the above inherent merits, the ceramic LLZTO is a promising material for stabilizing interfaces between the cathode and electrolyte and for optimizing the high-voltage cycling stability of other cathode materials for LIBs.
•A ceramic Li6.5La3Zr1.5Ta0.5O12 nano-layer is cladded on NCM surface.•The cycling stability at high cut-off voltage (4.5 V) are greatly improved.•2 wt % LLZTO makes NCM the superior performance due to the high Li+ conductivity.</description><subject>Cathodes</subject><subject>Ceramic Li6.5La3Zr1.5Ta0.5O12</subject><subject>Ceramics</subject><subject>Cladding</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>High voltages</subject><subject>High-voltage</subject><subject>Interface stability</subject><subject>LiNi0.5Co0.2Mn0.3O2</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Rechargeable batteries</subject><subject>Surface modification</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKvP4IBLmTE_TWZmWUr9gdFu6sZNyCS3bco0qcm00KfwlU2tuBUuXDiccy73Q-iW4IJgIh7WBXSge5WmoJgmlQnKyRkakKpkOat4fY4GGBOWj0QlLtFVjGuMcSlKPEBfU7dSToPJVna5yve-69USMn3QnXXLLPaqtZ3tD5lfZI19s7jgE48L-upwwWY0a1VMWe9-nB0kz32uvTM73dt96oGgNlYnWRS8UewjkILPVWqZEZo55XymO2XM8VanDhCu0cVCdRFufvcQvT9O55PnvJk9vUzGTa4pr_rc8FrUi7oqK8VrBi3WQhEzAtbWvG4pMEG0wAKIpppVwEtmSiBJaVsjjC7ZEN2derfBf-4g9nLtd8Glk5KORoQnOnWVXOXJpYOPMcBCboPdqHCQBMsjfbmWf_Tlkb480U_J8SkJ6Ym9hSCjtnAEbUPyS-Ptvx3fQ7SPaQ</recordid><startdate>20200720</startdate><enddate>20200720</enddate><creator>Liu, Ying</creator><creator>Xu, Ning</creator><creator>Cheng, Zhiyan</creator><creator>Xie, Huan</creator><creator>Ma, Yu</creator><creator>Wu, Mengtao</creator><creator>Zhang, Yufei</creator><creator>Chen, Li</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200720</creationdate><title>Enhanced high-voltage cycling stability of LiNi0.5Co0.2Mn0.3O2 based on stable Li+-conductive ceramic Li6.5La3Zr1.5Ta0.5O12 nano cladding layer</title><author>Liu, Ying ; Xu, Ning ; Cheng, Zhiyan ; Xie, Huan ; Ma, Yu ; Wu, Mengtao ; Zhang, Yufei ; Chen, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-d5969f9878a593eb0c6a1d4e3b959b2e361c606e1c2c38e573d7e1606bbd6dc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cathodes</topic><topic>Ceramic Li6.5La3Zr1.5Ta0.5O12</topic><topic>Ceramics</topic><topic>Cladding</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>High voltages</topic><topic>High-voltage</topic><topic>Interface stability</topic><topic>LiNi0.5Co0.2Mn0.3O2</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Rechargeable batteries</topic><topic>Surface modification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Cheng, Zhiyan</creatorcontrib><creatorcontrib>Xie, Huan</creatorcontrib><creatorcontrib>Ma, Yu</creatorcontrib><creatorcontrib>Wu, Mengtao</creatorcontrib><creatorcontrib>Zhang, Yufei</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ying</au><au>Xu, Ning</au><au>Cheng, Zhiyan</au><au>Xie, Huan</au><au>Ma, Yu</au><au>Wu, Mengtao</au><au>Zhang, Yufei</au><au>Chen, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced high-voltage cycling stability of LiNi0.5Co0.2Mn0.3O2 based on stable Li+-conductive ceramic Li6.5La3Zr1.5Ta0.5O12 nano cladding layer</atitle><jtitle>Electrochimica acta</jtitle><date>2020-07-20</date><risdate>2020</risdate><volume>349</volume><spage>136251</spage><pages>136251-</pages><artnum>136251</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Enhancing the cycling stability of conventional LiNixCoyMn1-x-yO2 cathode materials under high cut-off voltage (>4.3 V) is an efficient route for the fabrication of ternary layered lithium-ion batteries (LIBs) with superior capacity. A garnet ceramic Li6.5La3Zr1.5Ta0.5O12 (LLZTO) is used as a functional nano-cladding layer on LiNi0.5Co0.2Mn0.3O2 (NCM) particle surface to endow NCM with improved reversible capacities and cycling stabilities. The NCM modified with 2 wt % LLZTO delivered the highest discharge capacity (146.6 mA h g−1, 88.5% capacity retention) at 1 C between 2.7 and 4.5 V after 100 cycles, and its rate capability was also significantly enhanced to 112.9 mA h g−1 at 5 C compared with 96.2 mA h g−1 for the unmodified NCM. These improved properties can be ascribed to the LLZTO cladded layer, the chemical stability of which strengthens the stability of the interface between NCM bulk and electrolyte, and the high Li+ conductivity of which accelerates the transport of Li+ through the three-dimensional channels. Due to the above inherent merits, the ceramic LLZTO is a promising material for stabilizing interfaces between the cathode and electrolyte and for optimizing the high-voltage cycling stability of other cathode materials for LIBs.
•A ceramic Li6.5La3Zr1.5Ta0.5O12 nano-layer is cladded on NCM surface.•The cycling stability at high cut-off voltage (4.5 V) are greatly improved.•2 wt % LLZTO makes NCM the superior performance due to the high Li+ conductivity.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.136251</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2020-07, Vol.349, p.136251, Article 136251 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2441576798 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Cathodes Ceramic Li6.5La3Zr1.5Ta0.5O12 Ceramics Cladding Electrode materials Electrolytes High voltages High-voltage Interface stability LiNi0.5Co0.2Mn0.3O2 Lithium Lithium-ion batteries Rechargeable batteries Surface modification |
title | Enhanced high-voltage cycling stability of LiNi0.5Co0.2Mn0.3O2 based on stable Li+-conductive ceramic Li6.5La3Zr1.5Ta0.5O12 nano cladding layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20high-voltage%20cycling%20stability%20of%20LiNi0.5Co0.2Mn0.3O2%20based%20on%20stable%20Li+-conductive%20ceramic%20Li6.5La3Zr1.5Ta0.5O12%20nano%20cladding%20layer&rft.jtitle=Electrochimica%20acta&rft.au=Liu,%20Ying&rft.date=2020-07-20&rft.volume=349&rft.spage=136251&rft.pages=136251-&rft.artnum=136251&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.136251&rft_dat=%3Cproquest_cross%3E2441576798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441576798&rft_id=info:pmid/&rft_els_id=S0013468620306435&rfr_iscdi=true |