The Distributional Solution of the Fractional-order Descriptor Linear Time-Invariant System and Its Application in Fractional Circuits
The distributional solution of the Fractional-Order Descriptor Linear Time-Invariant System (FODLTIS) and its application in the fractional circuits are studied. Based on proposing the definition ofc0Dtαδ(t), the Laplace transform ofc0Dtαδ(t) is investigated. Next, with regard to FODLTIS, the system...
Gespeichert in:
Veröffentlicht in: | IAENG international journal of applied mathematics 2020-09, Vol.50 (3), p.1-9 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IAENG international journal of applied mathematics |
container_volume | 50 |
creator | Feng, Zaiyong Chen, MingZhong Ye, Linghua Wu, Lingling |
description | The distributional solution of the Fractional-Order Descriptor Linear Time-Invariant System (FODLTIS) and its application in the fractional circuits are studied. Based on proposing the definition ofc0Dtαδ(t), the Laplace transform ofc0Dtαδ(t) is investigated. Next, with regard to FODLTIS, the system is decomposed into fast subsystem and slow subsystem by restricted equivalent transformation. Solution for the slow subsystem is known. Using Laplace transform ofc0Dtαδ(t), distributional solution for the fast subsystem is derived. Combining solutions of the slow subsystem and the fast subsystem, the distributional solution of FODLTIS is successfully obtained. The structure of the distributional solution of the system shows that the superposition principle for the system still holds for FODLTIS. Finally, the distributional solution of FODLTIS is applied in the fractional RC circuit, fractional RL circuit, and the fractional LC circuit with ideal operational amplifier. Numerical solution and figures are made to verify the correctness and stability of the solution. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2441576536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441576536</sourcerecordid><originalsourceid>FETCH-proquest_journals_24415765363</originalsourceid><addsrcrecordid>eNqNjEsKwkAQRAdR8HuHBtcBjTE6S_GDgjuzlzEZsSXOxO6O4AU8t0FFXFqbKnhVVVOtodZhoPU0rn_zZNpUbebzYBDrSi31SE4WFshCeCgFvTM57Hz-iuCPIBVekUnfKPCUWYKF5ZSwEE-wRWcNQYIXG2zczRAaJ7C7s9gLGJfBRhhmRZFjal6f6H7-YI6UlijcVY2jydn2Pt5R_dUyma-Dgvy1tCz7sy-pWvA-jKLheBKPR_Hov9YT-oBU0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441576536</pqid></control><display><type>article</type><title>The Distributional Solution of the Fractional-order Descriptor Linear Time-Invariant System and Its Application in Fractional Circuits</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Feng, Zaiyong ; Chen, MingZhong ; Ye, Linghua ; Wu, Lingling</creator><creatorcontrib>Feng, Zaiyong ; Chen, MingZhong ; Ye, Linghua ; Wu, Lingling</creatorcontrib><description>The distributional solution of the Fractional-Order Descriptor Linear Time-Invariant System (FODLTIS) and its application in the fractional circuits are studied. Based on proposing the definition ofc0Dtαδ(t), the Laplace transform ofc0Dtαδ(t) is investigated. Next, with regard to FODLTIS, the system is decomposed into fast subsystem and slow subsystem by restricted equivalent transformation. Solution for the slow subsystem is known. Using Laplace transform ofc0Dtαδ(t), distributional solution for the fast subsystem is derived. Combining solutions of the slow subsystem and the fast subsystem, the distributional solution of FODLTIS is successfully obtained. The structure of the distributional solution of the system shows that the superposition principle for the system still holds for FODLTIS. Finally, the distributional solution of FODLTIS is applied in the fractional RC circuit, fractional RL circuit, and the fractional LC circuit with ideal operational amplifier. Numerical solution and figures are made to verify the correctness and stability of the solution.</description><identifier>ISSN: 1992-9978</identifier><identifier>EISSN: 1992-9986</identifier><language>eng</language><publisher>Hong Kong: International Association of Engineers</publisher><subject>Circuits ; Laplace transforms ; LC circuits ; Operational amplifiers ; RC circuits ; RL circuits ; Subsystems ; Superposition (mathematics) ; Time invariant systems</subject><ispartof>IAENG international journal of applied mathematics, 2020-09, Vol.50 (3), p.1-9</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0 (the“License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Feng, Zaiyong</creatorcontrib><creatorcontrib>Chen, MingZhong</creatorcontrib><creatorcontrib>Ye, Linghua</creatorcontrib><creatorcontrib>Wu, Lingling</creatorcontrib><title>The Distributional Solution of the Fractional-order Descriptor Linear Time-Invariant System and Its Application in Fractional Circuits</title><title>IAENG international journal of applied mathematics</title><description>The distributional solution of the Fractional-Order Descriptor Linear Time-Invariant System (FODLTIS) and its application in the fractional circuits are studied. Based on proposing the definition ofc0Dtαδ(t), the Laplace transform ofc0Dtαδ(t) is investigated. Next, with regard to FODLTIS, the system is decomposed into fast subsystem and slow subsystem by restricted equivalent transformation. Solution for the slow subsystem is known. Using Laplace transform ofc0Dtαδ(t), distributional solution for the fast subsystem is derived. Combining solutions of the slow subsystem and the fast subsystem, the distributional solution of FODLTIS is successfully obtained. The structure of the distributional solution of the system shows that the superposition principle for the system still holds for FODLTIS. Finally, the distributional solution of FODLTIS is applied in the fractional RC circuit, fractional RL circuit, and the fractional LC circuit with ideal operational amplifier. Numerical solution and figures are made to verify the correctness and stability of the solution.</description><subject>Circuits</subject><subject>Laplace transforms</subject><subject>LC circuits</subject><subject>Operational amplifiers</subject><subject>RC circuits</subject><subject>RL circuits</subject><subject>Subsystems</subject><subject>Superposition (mathematics)</subject><subject>Time invariant systems</subject><issn>1992-9978</issn><issn>1992-9986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjEsKwkAQRAdR8HuHBtcBjTE6S_GDgjuzlzEZsSXOxO6O4AU8t0FFXFqbKnhVVVOtodZhoPU0rn_zZNpUbebzYBDrSi31SE4WFshCeCgFvTM57Hz-iuCPIBVekUnfKPCUWYKF5ZSwEE-wRWcNQYIXG2zczRAaJ7C7s9gLGJfBRhhmRZFjal6f6H7-YI6UlijcVY2jydn2Pt5R_dUyma-Dgvy1tCz7sy-pWvA-jKLheBKPR_Hov9YT-oBU0Q</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Feng, Zaiyong</creator><creator>Chen, MingZhong</creator><creator>Ye, Linghua</creator><creator>Wu, Lingling</creator><general>International Association of Engineers</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200901</creationdate><title>The Distributional Solution of the Fractional-order Descriptor Linear Time-Invariant System and Its Application in Fractional Circuits</title><author>Feng, Zaiyong ; Chen, MingZhong ; Ye, Linghua ; Wu, Lingling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24415765363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Circuits</topic><topic>Laplace transforms</topic><topic>LC circuits</topic><topic>Operational amplifiers</topic><topic>RC circuits</topic><topic>RL circuits</topic><topic>Subsystems</topic><topic>Superposition (mathematics)</topic><topic>Time invariant systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Zaiyong</creatorcontrib><creatorcontrib>Chen, MingZhong</creatorcontrib><creatorcontrib>Ye, Linghua</creatorcontrib><creatorcontrib>Wu, Lingling</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>IAENG international journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Zaiyong</au><au>Chen, MingZhong</au><au>Ye, Linghua</au><au>Wu, Lingling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Distributional Solution of the Fractional-order Descriptor Linear Time-Invariant System and Its Application in Fractional Circuits</atitle><jtitle>IAENG international journal of applied mathematics</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>50</volume><issue>3</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1992-9978</issn><eissn>1992-9986</eissn><abstract>The distributional solution of the Fractional-Order Descriptor Linear Time-Invariant System (FODLTIS) and its application in the fractional circuits are studied. Based on proposing the definition ofc0Dtαδ(t), the Laplace transform ofc0Dtαδ(t) is investigated. Next, with regard to FODLTIS, the system is decomposed into fast subsystem and slow subsystem by restricted equivalent transformation. Solution for the slow subsystem is known. Using Laplace transform ofc0Dtαδ(t), distributional solution for the fast subsystem is derived. Combining solutions of the slow subsystem and the fast subsystem, the distributional solution of FODLTIS is successfully obtained. The structure of the distributional solution of the system shows that the superposition principle for the system still holds for FODLTIS. Finally, the distributional solution of FODLTIS is applied in the fractional RC circuit, fractional RL circuit, and the fractional LC circuit with ideal operational amplifier. Numerical solution and figures are made to verify the correctness and stability of the solution.</abstract><cop>Hong Kong</cop><pub>International Association of Engineers</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1992-9978 |
ispartof | IAENG international journal of applied mathematics, 2020-09, Vol.50 (3), p.1-9 |
issn | 1992-9978 1992-9986 |
language | eng |
recordid | cdi_proquest_journals_2441576536 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Circuits Laplace transforms LC circuits Operational amplifiers RC circuits RL circuits Subsystems Superposition (mathematics) Time invariant systems |
title | The Distributional Solution of the Fractional-order Descriptor Linear Time-Invariant System and Its Application in Fractional Circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Distributional%20Solution%20of%20the%20Fractional-order%20Descriptor%20Linear%20Time-Invariant%20System%20and%20Its%20Application%20in%20Fractional%20Circuits&rft.jtitle=IAENG%20international%20journal%20of%20applied%20mathematics&rft.au=Feng,%20Zaiyong&rft.date=2020-09-01&rft.volume=50&rft.issue=3&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1992-9978&rft.eissn=1992-9986&rft_id=info:doi/&rft_dat=%3Cproquest%3E2441576536%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441576536&rft_id=info:pmid/&rfr_iscdi=true |