Thermodynamic cycle analysis of heat driven elastocaloric cooling system
The conventional elastocaloric cooling system is powered by mechanical drivers with more than 500 times mass over refrigerant mass, whereas the shape memory alloy actuator and heat driven cycle provide a new path for higher system compactness. Based on the thermodynamic and mechanical constraints be...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2020-04, Vol.197, p.117261, Article 117261 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 117261 |
container_title | Energy (Oxford) |
container_volume | 197 |
creator | Tan, Jianming Wang, Yao Xu, Shijie Liu, Huaican Qian, Suxin |
description | The conventional elastocaloric cooling system is powered by mechanical drivers with more than 500 times mass over refrigerant mass, whereas the shape memory alloy actuator and heat driven cycle provide a new path for higher system compactness. Based on the thermodynamic and mechanical constraints between the actuator shape memory alloy and the refrigerant super-elastic alloy, the cycle model is implemented to investigate the characteristics of the cycle efficiency, mass ratio and driving temperature difference in terms of length ratio and cross-sectional area ratio. In addition, the impacts of Young’s modulus, transformation strain and Clausius-Clapeyron coefficient are studied. Based on the multi-objective optimization technique, regarding the three different combinations of actuator and refrigerant materials, the optimum normalized COP occurs when the MDTD ranges from 52 K to 59 K, which does not further increase with higher driving temperature, implying that low-grade thermal energy at a temperature less than 100 °C is most economic to drive such a cycle. On the other hand, the heat driven cycle can be activated by MDTD down to 11 K, indicating a significant potential to harvest low-grade thermal energy. This study can promote future prototype development for solar-driven refrigerators and waste heat recovery for electronic devices.
•Thermodynamic and mechanical constraints are derived for heat driven EC system.•11 K driving temperature difference for Ni–Ti actuator with Cu–Zn–Al refrigerant.•Maximum normalized COP is achieved when driving temperature difference is 55 K. |
doi_str_mv | 10.1016/j.energy.2020.117261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441571617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544220303686</els_id><sourcerecordid>2441571617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b29dd8c5037885cacdec05e7011155d3808c23119216a45739c71266f5bf8baa3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gYeA59Sd3exHLoIUtULBSz0v282k3ZBm625ayL83JZ49DQzP-zLzEPIIdAEU5HOzwA7jblgwysYVKCbhisxAK55LpcU1mVEuaS6Kgt2Su5QaSqnQZTkjq80e4yFUQ2cP3mVucC1mtrPtkHzKQp3t0fZZFf0Zuwxbm_rgbBvihQ2h9d0uS0Pq8XBPbmrbJnz4m3Py_f62Wa7y9dfH5_J1nTvOiz7fsrKqtBOUK62Fs65CRwUqCgBCVFxT7RgHKBlIWwjFS6eASVmLba231vI5eZp6jzH8nDD1pgmnOB6cDCsKEAokqJEqJsrFkFLE2hyjP9g4GKDm4sw0ZnJmLs7M5GyMvUwxHD84e4wmOY-dw8pHdL2pgv-_4Bc1QHad</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441571617</pqid></control><display><type>article</type><title>Thermodynamic cycle analysis of heat driven elastocaloric cooling system</title><source>Elsevier ScienceDirect Journals</source><creator>Tan, Jianming ; Wang, Yao ; Xu, Shijie ; Liu, Huaican ; Qian, Suxin</creator><creatorcontrib>Tan, Jianming ; Wang, Yao ; Xu, Shijie ; Liu, Huaican ; Qian, Suxin</creatorcontrib><description>The conventional elastocaloric cooling system is powered by mechanical drivers with more than 500 times mass over refrigerant mass, whereas the shape memory alloy actuator and heat driven cycle provide a new path for higher system compactness. Based on the thermodynamic and mechanical constraints between the actuator shape memory alloy and the refrigerant super-elastic alloy, the cycle model is implemented to investigate the characteristics of the cycle efficiency, mass ratio and driving temperature difference in terms of length ratio and cross-sectional area ratio. In addition, the impacts of Young’s modulus, transformation strain and Clausius-Clapeyron coefficient are studied. Based on the multi-objective optimization technique, regarding the three different combinations of actuator and refrigerant materials, the optimum normalized COP occurs when the MDTD ranges from 52 K to 59 K, which does not further increase with higher driving temperature, implying that low-grade thermal energy at a temperature less than 100 °C is most economic to drive such a cycle. On the other hand, the heat driven cycle can be activated by MDTD down to 11 K, indicating a significant potential to harvest low-grade thermal energy. This study can promote future prototype development for solar-driven refrigerators and waste heat recovery for electronic devices.
•Thermodynamic and mechanical constraints are derived for heat driven EC system.•11 K driving temperature difference for Ni–Ti actuator with Cu–Zn–Al refrigerant.•Maximum normalized COP is achieved when driving temperature difference is 55 K.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2020.117261</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Actuators ; Caloric cooling ; Cooling ; Cooling systems ; Cycle ratio ; Economic conditions ; Electronic devices ; Electronic equipment ; Energy harvesting ; Heat ; Heat recovery ; Low-grade thermal energy ; Martensitic transformations ; Mechanical properties ; Modulus of elasticity ; Multiple objective analysis ; Not-in-kind cooling ; Optimization ; Optimization techniques ; Refrigerants ; Refrigerators ; Shape memory alloys ; Solid-state cooling ; Temperature gradients ; Thermal energy ; Thermoelastic cooling ; Waste heat recovery</subject><ispartof>Energy (Oxford), 2020-04, Vol.197, p.117261, Article 117261</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b29dd8c5037885cacdec05e7011155d3808c23119216a45739c71266f5bf8baa3</citedby><cites>FETCH-LOGICAL-c334t-b29dd8c5037885cacdec05e7011155d3808c23119216a45739c71266f5bf8baa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544220303686$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tan, Jianming</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Xu, Shijie</creatorcontrib><creatorcontrib>Liu, Huaican</creatorcontrib><creatorcontrib>Qian, Suxin</creatorcontrib><title>Thermodynamic cycle analysis of heat driven elastocaloric cooling system</title><title>Energy (Oxford)</title><description>The conventional elastocaloric cooling system is powered by mechanical drivers with more than 500 times mass over refrigerant mass, whereas the shape memory alloy actuator and heat driven cycle provide a new path for higher system compactness. Based on the thermodynamic and mechanical constraints between the actuator shape memory alloy and the refrigerant super-elastic alloy, the cycle model is implemented to investigate the characteristics of the cycle efficiency, mass ratio and driving temperature difference in terms of length ratio and cross-sectional area ratio. In addition, the impacts of Young’s modulus, transformation strain and Clausius-Clapeyron coefficient are studied. Based on the multi-objective optimization technique, regarding the three different combinations of actuator and refrigerant materials, the optimum normalized COP occurs when the MDTD ranges from 52 K to 59 K, which does not further increase with higher driving temperature, implying that low-grade thermal energy at a temperature less than 100 °C is most economic to drive such a cycle. On the other hand, the heat driven cycle can be activated by MDTD down to 11 K, indicating a significant potential to harvest low-grade thermal energy. This study can promote future prototype development for solar-driven refrigerators and waste heat recovery for electronic devices.
•Thermodynamic and mechanical constraints are derived for heat driven EC system.•11 K driving temperature difference for Ni–Ti actuator with Cu–Zn–Al refrigerant.•Maximum normalized COP is achieved when driving temperature difference is 55 K.</description><subject>Actuators</subject><subject>Caloric cooling</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Cycle ratio</subject><subject>Economic conditions</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Energy harvesting</subject><subject>Heat</subject><subject>Heat recovery</subject><subject>Low-grade thermal energy</subject><subject>Martensitic transformations</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Multiple objective analysis</subject><subject>Not-in-kind cooling</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Refrigerants</subject><subject>Refrigerators</subject><subject>Shape memory alloys</subject><subject>Solid-state cooling</subject><subject>Temperature gradients</subject><subject>Thermal energy</subject><subject>Thermoelastic cooling</subject><subject>Waste heat recovery</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gYeA59Sd3exHLoIUtULBSz0v282k3ZBm625ayL83JZ49DQzP-zLzEPIIdAEU5HOzwA7jblgwysYVKCbhisxAK55LpcU1mVEuaS6Kgt2Su5QaSqnQZTkjq80e4yFUQ2cP3mVucC1mtrPtkHzKQp3t0fZZFf0Zuwxbm_rgbBvihQ2h9d0uS0Pq8XBPbmrbJnz4m3Py_f62Wa7y9dfH5_J1nTvOiz7fsrKqtBOUK62Fs65CRwUqCgBCVFxT7RgHKBlIWwjFS6eASVmLba231vI5eZp6jzH8nDD1pgmnOB6cDCsKEAokqJEqJsrFkFLE2hyjP9g4GKDm4sw0ZnJmLs7M5GyMvUwxHD84e4wmOY-dw8pHdL2pgv-_4Bc1QHad</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Tan, Jianming</creator><creator>Wang, Yao</creator><creator>Xu, Shijie</creator><creator>Liu, Huaican</creator><creator>Qian, Suxin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200415</creationdate><title>Thermodynamic cycle analysis of heat driven elastocaloric cooling system</title><author>Tan, Jianming ; Wang, Yao ; Xu, Shijie ; Liu, Huaican ; Qian, Suxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b29dd8c5037885cacdec05e7011155d3808c23119216a45739c71266f5bf8baa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Caloric cooling</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Cycle ratio</topic><topic>Economic conditions</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Energy harvesting</topic><topic>Heat</topic><topic>Heat recovery</topic><topic>Low-grade thermal energy</topic><topic>Martensitic transformations</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Multiple objective analysis</topic><topic>Not-in-kind cooling</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Refrigerants</topic><topic>Refrigerators</topic><topic>Shape memory alloys</topic><topic>Solid-state cooling</topic><topic>Temperature gradients</topic><topic>Thermal energy</topic><topic>Thermoelastic cooling</topic><topic>Waste heat recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Jianming</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Xu, Shijie</creatorcontrib><creatorcontrib>Liu, Huaican</creatorcontrib><creatorcontrib>Qian, Suxin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Jianming</au><au>Wang, Yao</au><au>Xu, Shijie</au><au>Liu, Huaican</au><au>Qian, Suxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic cycle analysis of heat driven elastocaloric cooling system</atitle><jtitle>Energy (Oxford)</jtitle><date>2020-04-15</date><risdate>2020</risdate><volume>197</volume><spage>117261</spage><pages>117261-</pages><artnum>117261</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>The conventional elastocaloric cooling system is powered by mechanical drivers with more than 500 times mass over refrigerant mass, whereas the shape memory alloy actuator and heat driven cycle provide a new path for higher system compactness. Based on the thermodynamic and mechanical constraints between the actuator shape memory alloy and the refrigerant super-elastic alloy, the cycle model is implemented to investigate the characteristics of the cycle efficiency, mass ratio and driving temperature difference in terms of length ratio and cross-sectional area ratio. In addition, the impacts of Young’s modulus, transformation strain and Clausius-Clapeyron coefficient are studied. Based on the multi-objective optimization technique, regarding the three different combinations of actuator and refrigerant materials, the optimum normalized COP occurs when the MDTD ranges from 52 K to 59 K, which does not further increase with higher driving temperature, implying that low-grade thermal energy at a temperature less than 100 °C is most economic to drive such a cycle. On the other hand, the heat driven cycle can be activated by MDTD down to 11 K, indicating a significant potential to harvest low-grade thermal energy. This study can promote future prototype development for solar-driven refrigerators and waste heat recovery for electronic devices.
•Thermodynamic and mechanical constraints are derived for heat driven EC system.•11 K driving temperature difference for Ni–Ti actuator with Cu–Zn–Al refrigerant.•Maximum normalized COP is achieved when driving temperature difference is 55 K.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2020.117261</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2020-04, Vol.197, p.117261, Article 117261 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2441571617 |
source | Elsevier ScienceDirect Journals |
subjects | Actuators Caloric cooling Cooling Cooling systems Cycle ratio Economic conditions Electronic devices Electronic equipment Energy harvesting Heat Heat recovery Low-grade thermal energy Martensitic transformations Mechanical properties Modulus of elasticity Multiple objective analysis Not-in-kind cooling Optimization Optimization techniques Refrigerants Refrigerators Shape memory alloys Solid-state cooling Temperature gradients Thermal energy Thermoelastic cooling Waste heat recovery |
title | Thermodynamic cycle analysis of heat driven elastocaloric cooling system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A48%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20cycle%20analysis%20of%20heat%20driven%20elastocaloric%20cooling%20system&rft.jtitle=Energy%20(Oxford)&rft.au=Tan,%20Jianming&rft.date=2020-04-15&rft.volume=197&rft.spage=117261&rft.pages=117261-&rft.artnum=117261&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2020.117261&rft_dat=%3Cproquest_cross%3E2441571617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441571617&rft_id=info:pmid/&rft_els_id=S0360544220303686&rfr_iscdi=true |