Prediction of metal sheet forming based on a geometrical model approach
The panel production of small batch sizes for the hull of large ships requires a stable and flexible forming process, which is momentarily manually controlled by a system operator. The manual forming press control includes the metal sheet handling above the forming tool for defining the contact poin...
Gespeichert in:
Veröffentlicht in: | International journal of material forming 2020-09, Vol.13 (5), p.829-839 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 839 |
---|---|
container_issue | 5 |
container_start_page | 829 |
container_title | International journal of material forming |
container_volume | 13 |
creator | Froitzheim, Pascal Stoltmann, Michael Fuchs, Normen Woernle, Christoph Flügge, Wilko |
description | The panel production of small batch sizes for the hull of large ships requires a stable and flexible forming process, which is momentarily manually controlled by a system operator. The manual forming press control includes the metal sheet handling above the forming tool for defining the contact point and engagement depth of the sword and subjective monitoring of the forming degree by using the light gap check method. For objectifying the process monitoring and reducing the dependency on the experience of the system operator an automated solution is needed. Within the automated process control the metal sheet deformation behavior has to be predicted in real-time during the forming process. To achieve this, the deformation prognosis for the ship panel’s production is handled inside the described work. Based on a state of art analysis a geometrical approach to describe the metal sheet deformation behavior is developed for the multi-step forming process by three-point-bending. The related geometrical parameters are predicted using a new type of prediction method by means of an artificial neural network. This prediction method requires the network definition and extensive experimental investigations for training the artificial neural network. |
doi_str_mv | 10.1007/s12289-019-01529-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441570464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441570464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2839ba04383d0004f096ed280a494a414e19e2acc403bb95604db4b29b4d3fe33</originalsourceid><addsrcrecordid>eNp9kE1LA0EMhgdRsNT-AU8DnlfnI_sxRylahYIe9DzMR7bd0t2pM9uD_96pK3ozEBLI8ybhJeSas1vOWH2XuBCNKhg_ZSlUoc7IjKuKFZXgcP7bs-qSLFLasRxS1LWAGVm9RvSdG7sw0NDSHkezp2mLONI2xL4bNtSahJ7muaEbDJmInctQHzzuqTkcYjBue0UuWrNPuPipc_L--PC2fCrWL6vn5f26cJKrsRCNVNYwkI30-QtomarQi4YZUGCAA3KFwjgHTFqryoqBt2CFsuBli1LOyc20N5_9OGIa9S4c45BPagHAy5pBBZkSE-ViSCliqw-x60381Jzpk2d68kxnz_S3Z1plkZxEKcPDBuPf6n9UX59SbY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441570464</pqid></control><display><type>article</type><title>Prediction of metal sheet forming based on a geometrical model approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Froitzheim, Pascal ; Stoltmann, Michael ; Fuchs, Normen ; Woernle, Christoph ; Flügge, Wilko</creator><creatorcontrib>Froitzheim, Pascal ; Stoltmann, Michael ; Fuchs, Normen ; Woernle, Christoph ; Flügge, Wilko</creatorcontrib><description>The panel production of small batch sizes for the hull of large ships requires a stable and flexible forming process, which is momentarily manually controlled by a system operator. The manual forming press control includes the metal sheet handling above the forming tool for defining the contact point and engagement depth of the sword and subjective monitoring of the forming degree by using the light gap check method. For objectifying the process monitoring and reducing the dependency on the experience of the system operator an automated solution is needed. Within the automated process control the metal sheet deformation behavior has to be predicted in real-time during the forming process. To achieve this, the deformation prognosis for the ship panel’s production is handled inside the described work. Based on a state of art analysis a geometrical approach to describe the metal sheet deformation behavior is developed for the multi-step forming process by three-point-bending. The related geometrical parameters are predicted using a new type of prediction method by means of an artificial neural network. This prediction method requires the network definition and extensive experimental investigations for training the artificial neural network.</description><identifier>ISSN: 1960-6206</identifier><identifier>EISSN: 1960-6214</identifier><identifier>DOI: 10.1007/s12289-019-01529-9</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>Artificial neural networks ; Automatic control ; Automation ; CAE) and Design ; Computational Intelligence ; Computer-Aided Engineering (CAD ; Deformation ; Engineering ; Machines ; Manual control ; Manufacturing ; Materials Science ; Mechanical Engineering ; Metal sheets ; Monitoring ; Neural networks ; Predictions ; Process controls ; Processes ; Review</subject><ispartof>International journal of material forming, 2020-09, Vol.13 (5), p.829-839</ispartof><rights>Springer-Verlag France SAS, part of Springer Nature 2019</rights><rights>Springer-Verlag France SAS, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2839ba04383d0004f096ed280a494a414e19e2acc403bb95604db4b29b4d3fe33</citedby><cites>FETCH-LOGICAL-c319t-2839ba04383d0004f096ed280a494a414e19e2acc403bb95604db4b29b4d3fe33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12289-019-01529-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12289-019-01529-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Froitzheim, Pascal</creatorcontrib><creatorcontrib>Stoltmann, Michael</creatorcontrib><creatorcontrib>Fuchs, Normen</creatorcontrib><creatorcontrib>Woernle, Christoph</creatorcontrib><creatorcontrib>Flügge, Wilko</creatorcontrib><title>Prediction of metal sheet forming based on a geometrical model approach</title><title>International journal of material forming</title><addtitle>Int J Mater Form</addtitle><description>The panel production of small batch sizes for the hull of large ships requires a stable and flexible forming process, which is momentarily manually controlled by a system operator. The manual forming press control includes the metal sheet handling above the forming tool for defining the contact point and engagement depth of the sword and subjective monitoring of the forming degree by using the light gap check method. For objectifying the process monitoring and reducing the dependency on the experience of the system operator an automated solution is needed. Within the automated process control the metal sheet deformation behavior has to be predicted in real-time during the forming process. To achieve this, the deformation prognosis for the ship panel’s production is handled inside the described work. Based on a state of art analysis a geometrical approach to describe the metal sheet deformation behavior is developed for the multi-step forming process by three-point-bending. The related geometrical parameters are predicted using a new type of prediction method by means of an artificial neural network. This prediction method requires the network definition and extensive experimental investigations for training the artificial neural network.</description><subject>Artificial neural networks</subject><subject>Automatic control</subject><subject>Automation</subject><subject>CAE) and Design</subject><subject>Computational Intelligence</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Deformation</subject><subject>Engineering</subject><subject>Machines</subject><subject>Manual control</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Metal sheets</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Process controls</subject><subject>Processes</subject><subject>Review</subject><issn>1960-6206</issn><issn>1960-6214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LA0EMhgdRsNT-AU8DnlfnI_sxRylahYIe9DzMR7bd0t2pM9uD_96pK3ozEBLI8ybhJeSas1vOWH2XuBCNKhg_ZSlUoc7IjKuKFZXgcP7bs-qSLFLasRxS1LWAGVm9RvSdG7sw0NDSHkezp2mLONI2xL4bNtSahJ7muaEbDJmInctQHzzuqTkcYjBue0UuWrNPuPipc_L--PC2fCrWL6vn5f26cJKrsRCNVNYwkI30-QtomarQi4YZUGCAA3KFwjgHTFqryoqBt2CFsuBli1LOyc20N5_9OGIa9S4c45BPagHAy5pBBZkSE-ViSCliqw-x60381Jzpk2d68kxnz_S3Z1plkZxEKcPDBuPf6n9UX59SbY0</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Froitzheim, Pascal</creator><creator>Stoltmann, Michael</creator><creator>Fuchs, Normen</creator><creator>Woernle, Christoph</creator><creator>Flügge, Wilko</creator><general>Springer Paris</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>Prediction of metal sheet forming based on a geometrical model approach</title><author>Froitzheim, Pascal ; Stoltmann, Michael ; Fuchs, Normen ; Woernle, Christoph ; Flügge, Wilko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2839ba04383d0004f096ed280a494a414e19e2acc403bb95604db4b29b4d3fe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Automatic control</topic><topic>Automation</topic><topic>CAE) and Design</topic><topic>Computational Intelligence</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Deformation</topic><topic>Engineering</topic><topic>Machines</topic><topic>Manual control</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Metal sheets</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Process controls</topic><topic>Processes</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Froitzheim, Pascal</creatorcontrib><creatorcontrib>Stoltmann, Michael</creatorcontrib><creatorcontrib>Fuchs, Normen</creatorcontrib><creatorcontrib>Woernle, Christoph</creatorcontrib><creatorcontrib>Flügge, Wilko</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of material forming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Froitzheim, Pascal</au><au>Stoltmann, Michael</au><au>Fuchs, Normen</au><au>Woernle, Christoph</au><au>Flügge, Wilko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of metal sheet forming based on a geometrical model approach</atitle><jtitle>International journal of material forming</jtitle><stitle>Int J Mater Form</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>13</volume><issue>5</issue><spage>829</spage><epage>839</epage><pages>829-839</pages><issn>1960-6206</issn><eissn>1960-6214</eissn><abstract>The panel production of small batch sizes for the hull of large ships requires a stable and flexible forming process, which is momentarily manually controlled by a system operator. The manual forming press control includes the metal sheet handling above the forming tool for defining the contact point and engagement depth of the sword and subjective monitoring of the forming degree by using the light gap check method. For objectifying the process monitoring and reducing the dependency on the experience of the system operator an automated solution is needed. Within the automated process control the metal sheet deformation behavior has to be predicted in real-time during the forming process. To achieve this, the deformation prognosis for the ship panel’s production is handled inside the described work. Based on a state of art analysis a geometrical approach to describe the metal sheet deformation behavior is developed for the multi-step forming process by three-point-bending. The related geometrical parameters are predicted using a new type of prediction method by means of an artificial neural network. This prediction method requires the network definition and extensive experimental investigations for training the artificial neural network.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s12289-019-01529-9</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1960-6206 |
ispartof | International journal of material forming, 2020-09, Vol.13 (5), p.829-839 |
issn | 1960-6206 1960-6214 |
language | eng |
recordid | cdi_proquest_journals_2441570464 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial neural networks Automatic control Automation CAE) and Design Computational Intelligence Computer-Aided Engineering (CAD Deformation Engineering Machines Manual control Manufacturing Materials Science Mechanical Engineering Metal sheets Monitoring Neural networks Predictions Process controls Processes Review |
title | Prediction of metal sheet forming based on a geometrical model approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20metal%20sheet%20forming%20based%20on%20a%20geometrical%20model%20approach&rft.jtitle=International%20journal%20of%20material%20forming&rft.au=Froitzheim,%20Pascal&rft.date=2020-09-01&rft.volume=13&rft.issue=5&rft.spage=829&rft.epage=839&rft.pages=829-839&rft.issn=1960-6206&rft.eissn=1960-6214&rft_id=info:doi/10.1007/s12289-019-01529-9&rft_dat=%3Cproquest_cross%3E2441570464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441570464&rft_id=info:pmid/&rfr_iscdi=true |