Prediction of metal sheet forming based on a geometrical model approach

The panel production of small batch sizes for the hull of large ships requires a stable and flexible forming process, which is momentarily manually controlled by a system operator. The manual forming press control includes the metal sheet handling above the forming tool for defining the contact poin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of material forming 2020-09, Vol.13 (5), p.829-839
Hauptverfasser: Froitzheim, Pascal, Stoltmann, Michael, Fuchs, Normen, Woernle, Christoph, Flügge, Wilko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 839
container_issue 5
container_start_page 829
container_title International journal of material forming
container_volume 13
creator Froitzheim, Pascal
Stoltmann, Michael
Fuchs, Normen
Woernle, Christoph
Flügge, Wilko
description The panel production of small batch sizes for the hull of large ships requires a stable and flexible forming process, which is momentarily manually controlled by a system operator. The manual forming press control includes the metal sheet handling above the forming tool for defining the contact point and engagement depth of the sword and subjective monitoring of the forming degree by using the light gap check method. For objectifying the process monitoring and reducing the dependency on the experience of the system operator an automated solution is needed. Within the automated process control the metal sheet deformation behavior has to be predicted in real-time during the forming process. To achieve this, the deformation prognosis for the ship panel’s production is handled inside the described work. Based on a state of art analysis a geometrical approach to describe the metal sheet deformation behavior is developed for the multi-step forming process by three-point-bending. The related geometrical parameters are predicted using a new type of prediction method by means of an artificial neural network. This prediction method requires the network definition and extensive experimental investigations for training the artificial neural network.
doi_str_mv 10.1007/s12289-019-01529-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441570464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441570464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2839ba04383d0004f096ed280a494a414e19e2acc403bb95604db4b29b4d3fe33</originalsourceid><addsrcrecordid>eNp9kE1LA0EMhgdRsNT-AU8DnlfnI_sxRylahYIe9DzMR7bd0t2pM9uD_96pK3ozEBLI8ybhJeSas1vOWH2XuBCNKhg_ZSlUoc7IjKuKFZXgcP7bs-qSLFLasRxS1LWAGVm9RvSdG7sw0NDSHkezp2mLONI2xL4bNtSahJ7muaEbDJmInctQHzzuqTkcYjBue0UuWrNPuPipc_L--PC2fCrWL6vn5f26cJKrsRCNVNYwkI30-QtomarQi4YZUGCAA3KFwjgHTFqryoqBt2CFsuBli1LOyc20N5_9OGIa9S4c45BPagHAy5pBBZkSE-ViSCliqw-x60381Jzpk2d68kxnz_S3Z1plkZxEKcPDBuPf6n9UX59SbY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441570464</pqid></control><display><type>article</type><title>Prediction of metal sheet forming based on a geometrical model approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Froitzheim, Pascal ; Stoltmann, Michael ; Fuchs, Normen ; Woernle, Christoph ; Flügge, Wilko</creator><creatorcontrib>Froitzheim, Pascal ; Stoltmann, Michael ; Fuchs, Normen ; Woernle, Christoph ; Flügge, Wilko</creatorcontrib><description>The panel production of small batch sizes for the hull of large ships requires a stable and flexible forming process, which is momentarily manually controlled by a system operator. The manual forming press control includes the metal sheet handling above the forming tool for defining the contact point and engagement depth of the sword and subjective monitoring of the forming degree by using the light gap check method. For objectifying the process monitoring and reducing the dependency on the experience of the system operator an automated solution is needed. Within the automated process control the metal sheet deformation behavior has to be predicted in real-time during the forming process. To achieve this, the deformation prognosis for the ship panel’s production is handled inside the described work. Based on a state of art analysis a geometrical approach to describe the metal sheet deformation behavior is developed for the multi-step forming process by three-point-bending. The related geometrical parameters are predicted using a new type of prediction method by means of an artificial neural network. This prediction method requires the network definition and extensive experimental investigations for training the artificial neural network.</description><identifier>ISSN: 1960-6206</identifier><identifier>EISSN: 1960-6214</identifier><identifier>DOI: 10.1007/s12289-019-01529-9</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>Artificial neural networks ; Automatic control ; Automation ; CAE) and Design ; Computational Intelligence ; Computer-Aided Engineering (CAD ; Deformation ; Engineering ; Machines ; Manual control ; Manufacturing ; Materials Science ; Mechanical Engineering ; Metal sheets ; Monitoring ; Neural networks ; Predictions ; Process controls ; Processes ; Review</subject><ispartof>International journal of material forming, 2020-09, Vol.13 (5), p.829-839</ispartof><rights>Springer-Verlag France SAS, part of Springer Nature 2019</rights><rights>Springer-Verlag France SAS, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2839ba04383d0004f096ed280a494a414e19e2acc403bb95604db4b29b4d3fe33</citedby><cites>FETCH-LOGICAL-c319t-2839ba04383d0004f096ed280a494a414e19e2acc403bb95604db4b29b4d3fe33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12289-019-01529-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12289-019-01529-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Froitzheim, Pascal</creatorcontrib><creatorcontrib>Stoltmann, Michael</creatorcontrib><creatorcontrib>Fuchs, Normen</creatorcontrib><creatorcontrib>Woernle, Christoph</creatorcontrib><creatorcontrib>Flügge, Wilko</creatorcontrib><title>Prediction of metal sheet forming based on a geometrical model approach</title><title>International journal of material forming</title><addtitle>Int J Mater Form</addtitle><description>The panel production of small batch sizes for the hull of large ships requires a stable and flexible forming process, which is momentarily manually controlled by a system operator. The manual forming press control includes the metal sheet handling above the forming tool for defining the contact point and engagement depth of the sword and subjective monitoring of the forming degree by using the light gap check method. For objectifying the process monitoring and reducing the dependency on the experience of the system operator an automated solution is needed. Within the automated process control the metal sheet deformation behavior has to be predicted in real-time during the forming process. To achieve this, the deformation prognosis for the ship panel’s production is handled inside the described work. Based on a state of art analysis a geometrical approach to describe the metal sheet deformation behavior is developed for the multi-step forming process by three-point-bending. The related geometrical parameters are predicted using a new type of prediction method by means of an artificial neural network. This prediction method requires the network definition and extensive experimental investigations for training the artificial neural network.</description><subject>Artificial neural networks</subject><subject>Automatic control</subject><subject>Automation</subject><subject>CAE) and Design</subject><subject>Computational Intelligence</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Deformation</subject><subject>Engineering</subject><subject>Machines</subject><subject>Manual control</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Metal sheets</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Process controls</subject><subject>Processes</subject><subject>Review</subject><issn>1960-6206</issn><issn>1960-6214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LA0EMhgdRsNT-AU8DnlfnI_sxRylahYIe9DzMR7bd0t2pM9uD_96pK3ozEBLI8ybhJeSas1vOWH2XuBCNKhg_ZSlUoc7IjKuKFZXgcP7bs-qSLFLasRxS1LWAGVm9RvSdG7sw0NDSHkezp2mLONI2xL4bNtSahJ7muaEbDJmInctQHzzuqTkcYjBue0UuWrNPuPipc_L--PC2fCrWL6vn5f26cJKrsRCNVNYwkI30-QtomarQi4YZUGCAA3KFwjgHTFqryoqBt2CFsuBli1LOyc20N5_9OGIa9S4c45BPagHAy5pBBZkSE-ViSCliqw-x60381Jzpk2d68kxnz_S3Z1plkZxEKcPDBuPf6n9UX59SbY0</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Froitzheim, Pascal</creator><creator>Stoltmann, Michael</creator><creator>Fuchs, Normen</creator><creator>Woernle, Christoph</creator><creator>Flügge, Wilko</creator><general>Springer Paris</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>Prediction of metal sheet forming based on a geometrical model approach</title><author>Froitzheim, Pascal ; Stoltmann, Michael ; Fuchs, Normen ; Woernle, Christoph ; Flügge, Wilko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2839ba04383d0004f096ed280a494a414e19e2acc403bb95604db4b29b4d3fe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Automatic control</topic><topic>Automation</topic><topic>CAE) and Design</topic><topic>Computational Intelligence</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Deformation</topic><topic>Engineering</topic><topic>Machines</topic><topic>Manual control</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Metal sheets</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Process controls</topic><topic>Processes</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Froitzheim, Pascal</creatorcontrib><creatorcontrib>Stoltmann, Michael</creatorcontrib><creatorcontrib>Fuchs, Normen</creatorcontrib><creatorcontrib>Woernle, Christoph</creatorcontrib><creatorcontrib>Flügge, Wilko</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of material forming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Froitzheim, Pascal</au><au>Stoltmann, Michael</au><au>Fuchs, Normen</au><au>Woernle, Christoph</au><au>Flügge, Wilko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of metal sheet forming based on a geometrical model approach</atitle><jtitle>International journal of material forming</jtitle><stitle>Int J Mater Form</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>13</volume><issue>5</issue><spage>829</spage><epage>839</epage><pages>829-839</pages><issn>1960-6206</issn><eissn>1960-6214</eissn><abstract>The panel production of small batch sizes for the hull of large ships requires a stable and flexible forming process, which is momentarily manually controlled by a system operator. The manual forming press control includes the metal sheet handling above the forming tool for defining the contact point and engagement depth of the sword and subjective monitoring of the forming degree by using the light gap check method. For objectifying the process monitoring and reducing the dependency on the experience of the system operator an automated solution is needed. Within the automated process control the metal sheet deformation behavior has to be predicted in real-time during the forming process. To achieve this, the deformation prognosis for the ship panel’s production is handled inside the described work. Based on a state of art analysis a geometrical approach to describe the metal sheet deformation behavior is developed for the multi-step forming process by three-point-bending. The related geometrical parameters are predicted using a new type of prediction method by means of an artificial neural network. This prediction method requires the network definition and extensive experimental investigations for training the artificial neural network.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s12289-019-01529-9</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1960-6206
ispartof International journal of material forming, 2020-09, Vol.13 (5), p.829-839
issn 1960-6206
1960-6214
language eng
recordid cdi_proquest_journals_2441570464
source SpringerLink Journals - AutoHoldings
subjects Artificial neural networks
Automatic control
Automation
CAE) and Design
Computational Intelligence
Computer-Aided Engineering (CAD
Deformation
Engineering
Machines
Manual control
Manufacturing
Materials Science
Mechanical Engineering
Metal sheets
Monitoring
Neural networks
Predictions
Process controls
Processes
Review
title Prediction of metal sheet forming based on a geometrical model approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20metal%20sheet%20forming%20based%20on%20a%20geometrical%20model%20approach&rft.jtitle=International%20journal%20of%20material%20forming&rft.au=Froitzheim,%20Pascal&rft.date=2020-09-01&rft.volume=13&rft.issue=5&rft.spage=829&rft.epage=839&rft.pages=829-839&rft.issn=1960-6206&rft.eissn=1960-6214&rft_id=info:doi/10.1007/s12289-019-01529-9&rft_dat=%3Cproquest_cross%3E2441570464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441570464&rft_id=info:pmid/&rfr_iscdi=true