Effect of AFM and FM exchange interaction on magnetic anisotropy properties of single domain SmFeO3 at nanoscale
[Display omitted] •The magnetic behavior of the SFO depends on particle size and initial magnetic state.•Magneto crystalline anisotropy and unidirectional anisotropy of SFO depend on temperature.•Remnant magnetization, M−H behavior and Coercive field are highly dependent on particle size.•The partic...
Gespeichert in:
Veröffentlicht in: | Journal of magnetism and magnetic materials 2020-05, Vol.502, p.166505, Article 166505 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 166505 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 502 |
creator | Ali Khan, Azam Ahlawat, Anju Deshmukh, Pratik Sharma, R.K. VelagaSrihari Singh, Rashmi Vaish, Rahul Karnal, A.K. Satapathy, S. |
description | [Display omitted]
•The magnetic behavior of the SFO depends on particle size and initial magnetic state.•Magneto crystalline anisotropy and unidirectional anisotropy of SFO depend on temperature.•Remnant magnetization, M−H behavior and Coercive field are highly dependent on particle size.•The particles remain in single domain state up to ~170 nm (critical size).•Coercive magnetic field and magnetization increases with particle size up to (~170 nm).•The single domain nanoparticle magnetic behavior is different to that of multi domain bulk.•At low temperature AFM and FM interaction leads to unidirectional anisotropy rotation of spins.•The compensation temperature is higher (~13 K) in nano-SFO compare to that of bulk (~4K).•Sm3+ spin unidirectional magnetic anisotropy is more effective in between ~13 K to ~65 K.•Fe3+ spin unidirectional anisotropy is effective beyond ~65 K.•Sm3+ spins can be rotated at ±50 Oe due to unidirectional anisotropy at low temperature.
Multifunctional Samarium orthoferrites (SmFeO3) nano-particles have been studying extensively due to their applications in digital memory, ultrafast switching, temperature dependent spin valves and sensor applications. Magnetic properties of SFO were investigated by varying particle size, initial magnetic state of material and applied field under Zero Field Cooling (ZFC) and Field Cooling (FC) protocol. It was found that the remnant magnetization, M−H behavior and coercive field are extremely dependent on particle size. It was also found that the magnetic behavior of single domain SFO nanoparticle is completely different to that of multi domain bulk due to uniaxial magneto crystalline anisotropy. The magnetization vs temperature (M−T) behavior of nano-particle depends on unidirectional anisotropy along with uniaxial magneto-crystalline anisotropy of SFO. The Sm3+ spin ordering in nano-SFO compensates to that of Fe3+ spin ordering at higher temperature (~13 K) compare to that of bulk (~4K). The Sm3+ spin unidirectional magnetic anisotropy is more effective in between ~13 K to ~65 K and Fe3+ spin unidirectional anisotropy is effective at higher temperature beyond ~65 K. Magnetically poled nano-particles show completely different behavior to that of non-poled nano-SFO particles at low temperature. In nutshell, the manuscript shows why one can’t predict the magnetic behavior of the SFO without knowing its particle or grain size, initial magnetic state of the particle, procedure of measurement, the magnitud |
doi_str_mv | 10.1016/j.jmmm.2020.166505 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441310322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885319326654</els_id><sourcerecordid>2441310322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-cd48a4d258ff15c8c7e620631bd8a690f8a9f1ddd58777f2c557ef5895a5e3633</originalsourceid><addsrcrecordid>eNp9kEtLQzEQhYMoWB9_wFXA9a153OSm4EbEqqC4UNchJpOaS29Skyj6702pa2GYgeGcmcOH0Bklc0qovBjn4zRNc0ZYW0gpiNhDM6oG3vWDlPtoRjjpO6UEP0RHpYyEENorOUObG-_BVpw8vlo-YhMdbgO-7buJK8AhVsjG1pAibjWZVYQabNOFkmpOmx-8aR1yDVC2R0qIqzVglyYTIn6elvDEsak4mpiKNWs4QQferAuc_s1j9Lq8ebm-6x6ebu-vrx46yxd97azrlekdE8p7KqyyA0hGJKdvThm5IF6ZhafOOaGGYfDMCjGAF2ohjAAuOT9G57u7Ld_HJ5Sqx_SZY3upWd9TTglnrKnYTmVzKiWD15scJpN_NCV6S1aPektWb8nqHdlmutyZoOX_CpB1sQGiBRdyY6ldCv_ZfwG9_4Hj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441310322</pqid></control><display><type>article</type><title>Effect of AFM and FM exchange interaction on magnetic anisotropy properties of single domain SmFeO3 at nanoscale</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ali Khan, Azam ; Ahlawat, Anju ; Deshmukh, Pratik ; Sharma, R.K. ; VelagaSrihari ; Singh, Rashmi ; Vaish, Rahul ; Karnal, A.K. ; Satapathy, S.</creator><creatorcontrib>Ali Khan, Azam ; Ahlawat, Anju ; Deshmukh, Pratik ; Sharma, R.K. ; VelagaSrihari ; Singh, Rashmi ; Vaish, Rahul ; Karnal, A.K. ; Satapathy, S.</creatorcontrib><description>[Display omitted]
•The magnetic behavior of the SFO depends on particle size and initial magnetic state.•Magneto crystalline anisotropy and unidirectional anisotropy of SFO depend on temperature.•Remnant magnetization, M−H behavior and Coercive field are highly dependent on particle size.•The particles remain in single domain state up to ~170 nm (critical size).•Coercive magnetic field and magnetization increases with particle size up to (~170 nm).•The single domain nanoparticle magnetic behavior is different to that of multi domain bulk.•At low temperature AFM and FM interaction leads to unidirectional anisotropy rotation of spins.•The compensation temperature is higher (~13 K) in nano-SFO compare to that of bulk (~4K).•Sm3+ spin unidirectional magnetic anisotropy is more effective in between ~13 K to ~65 K.•Fe3+ spin unidirectional anisotropy is effective beyond ~65 K.•Sm3+ spins can be rotated at ±50 Oe due to unidirectional anisotropy at low temperature.
Multifunctional Samarium orthoferrites (SmFeO3) nano-particles have been studying extensively due to their applications in digital memory, ultrafast switching, temperature dependent spin valves and sensor applications. Magnetic properties of SFO were investigated by varying particle size, initial magnetic state of material and applied field under Zero Field Cooling (ZFC) and Field Cooling (FC) protocol. It was found that the remnant magnetization, M−H behavior and coercive field are extremely dependent on particle size. It was also found that the magnetic behavior of single domain SFO nanoparticle is completely different to that of multi domain bulk due to uniaxial magneto crystalline anisotropy. The magnetization vs temperature (M−T) behavior of nano-particle depends on unidirectional anisotropy along with uniaxial magneto-crystalline anisotropy of SFO. The Sm3+ spin ordering in nano-SFO compensates to that of Fe3+ spin ordering at higher temperature (~13 K) compare to that of bulk (~4K). The Sm3+ spin unidirectional magnetic anisotropy is more effective in between ~13 K to ~65 K and Fe3+ spin unidirectional anisotropy is effective at higher temperature beyond ~65 K. Magnetically poled nano-particles show completely different behavior to that of non-poled nano-SFO particles at low temperature. In nutshell, the manuscript shows why one can’t predict the magnetic behavior of the SFO without knowing its particle or grain size, initial magnetic state of the particle, procedure of measurement, the magnitude of applied field and temperature etc., since all these affects the magneto crystalline anisotropy as well as unidirectional anisotropy of SFO.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2020.166505</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Coercivity ; Cooling ; Crystal structure ; Crystallinity ; Grain size ; Low temperature ; Magnetic anisotropy ; Magnetic domains ; Magnetic nanoparticle ; Magnetic properties ; Magnetism ; Magnetization ; Nanoparticles ; Particle size ; Samarium ; SmFeO3 ; Spin valves ; SQUID magnetic measurements ; Temperature dependence ; Transmission electron microscopy</subject><ispartof>Journal of magnetism and magnetic materials, 2020-05, Vol.502, p.166505, Article 166505</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-cd48a4d258ff15c8c7e620631bd8a690f8a9f1ddd58777f2c557ef5895a5e3633</citedby><cites>FETCH-LOGICAL-c394t-cd48a4d258ff15c8c7e620631bd8a690f8a9f1ddd58777f2c557ef5895a5e3633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304885319326654$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Ali Khan, Azam</creatorcontrib><creatorcontrib>Ahlawat, Anju</creatorcontrib><creatorcontrib>Deshmukh, Pratik</creatorcontrib><creatorcontrib>Sharma, R.K.</creatorcontrib><creatorcontrib>VelagaSrihari</creatorcontrib><creatorcontrib>Singh, Rashmi</creatorcontrib><creatorcontrib>Vaish, Rahul</creatorcontrib><creatorcontrib>Karnal, A.K.</creatorcontrib><creatorcontrib>Satapathy, S.</creatorcontrib><title>Effect of AFM and FM exchange interaction on magnetic anisotropy properties of single domain SmFeO3 at nanoscale</title><title>Journal of magnetism and magnetic materials</title><description>[Display omitted]
•The magnetic behavior of the SFO depends on particle size and initial magnetic state.•Magneto crystalline anisotropy and unidirectional anisotropy of SFO depend on temperature.•Remnant magnetization, M−H behavior and Coercive field are highly dependent on particle size.•The particles remain in single domain state up to ~170 nm (critical size).•Coercive magnetic field and magnetization increases with particle size up to (~170 nm).•The single domain nanoparticle magnetic behavior is different to that of multi domain bulk.•At low temperature AFM and FM interaction leads to unidirectional anisotropy rotation of spins.•The compensation temperature is higher (~13 K) in nano-SFO compare to that of bulk (~4K).•Sm3+ spin unidirectional magnetic anisotropy is more effective in between ~13 K to ~65 K.•Fe3+ spin unidirectional anisotropy is effective beyond ~65 K.•Sm3+ spins can be rotated at ±50 Oe due to unidirectional anisotropy at low temperature.
Multifunctional Samarium orthoferrites (SmFeO3) nano-particles have been studying extensively due to their applications in digital memory, ultrafast switching, temperature dependent spin valves and sensor applications. Magnetic properties of SFO were investigated by varying particle size, initial magnetic state of material and applied field under Zero Field Cooling (ZFC) and Field Cooling (FC) protocol. It was found that the remnant magnetization, M−H behavior and coercive field are extremely dependent on particle size. It was also found that the magnetic behavior of single domain SFO nanoparticle is completely different to that of multi domain bulk due to uniaxial magneto crystalline anisotropy. The magnetization vs temperature (M−T) behavior of nano-particle depends on unidirectional anisotropy along with uniaxial magneto-crystalline anisotropy of SFO. The Sm3+ spin ordering in nano-SFO compensates to that of Fe3+ spin ordering at higher temperature (~13 K) compare to that of bulk (~4K). The Sm3+ spin unidirectional magnetic anisotropy is more effective in between ~13 K to ~65 K and Fe3+ spin unidirectional anisotropy is effective at higher temperature beyond ~65 K. Magnetically poled nano-particles show completely different behavior to that of non-poled nano-SFO particles at low temperature. In nutshell, the manuscript shows why one can’t predict the magnetic behavior of the SFO without knowing its particle or grain size, initial magnetic state of the particle, procedure of measurement, the magnitude of applied field and temperature etc., since all these affects the magneto crystalline anisotropy as well as unidirectional anisotropy of SFO.</description><subject>Anisotropy</subject><subject>Coercivity</subject><subject>Cooling</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Grain size</subject><subject>Low temperature</subject><subject>Magnetic anisotropy</subject><subject>Magnetic domains</subject><subject>Magnetic nanoparticle</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Nanoparticles</subject><subject>Particle size</subject><subject>Samarium</subject><subject>SmFeO3</subject><subject>Spin valves</subject><subject>SQUID magnetic measurements</subject><subject>Temperature dependence</subject><subject>Transmission electron microscopy</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLQzEQhYMoWB9_wFXA9a153OSm4EbEqqC4UNchJpOaS29Skyj6702pa2GYgeGcmcOH0Bklc0qovBjn4zRNc0ZYW0gpiNhDM6oG3vWDlPtoRjjpO6UEP0RHpYyEENorOUObG-_BVpw8vlo-YhMdbgO-7buJK8AhVsjG1pAibjWZVYQabNOFkmpOmx-8aR1yDVC2R0qIqzVglyYTIn6elvDEsak4mpiKNWs4QQferAuc_s1j9Lq8ebm-6x6ebu-vrx46yxd97azrlekdE8p7KqyyA0hGJKdvThm5IF6ZhafOOaGGYfDMCjGAF2ohjAAuOT9G57u7Ld_HJ5Sqx_SZY3upWd9TTglnrKnYTmVzKiWD15scJpN_NCV6S1aPektWb8nqHdlmutyZoOX_CpB1sQGiBRdyY6ldCv_ZfwG9_4Hj</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Ali Khan, Azam</creator><creator>Ahlawat, Anju</creator><creator>Deshmukh, Pratik</creator><creator>Sharma, R.K.</creator><creator>VelagaSrihari</creator><creator>Singh, Rashmi</creator><creator>Vaish, Rahul</creator><creator>Karnal, A.K.</creator><creator>Satapathy, S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200515</creationdate><title>Effect of AFM and FM exchange interaction on magnetic anisotropy properties of single domain SmFeO3 at nanoscale</title><author>Ali Khan, Azam ; Ahlawat, Anju ; Deshmukh, Pratik ; Sharma, R.K. ; VelagaSrihari ; Singh, Rashmi ; Vaish, Rahul ; Karnal, A.K. ; Satapathy, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-cd48a4d258ff15c8c7e620631bd8a690f8a9f1ddd58777f2c557ef5895a5e3633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Coercivity</topic><topic>Cooling</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Grain size</topic><topic>Low temperature</topic><topic>Magnetic anisotropy</topic><topic>Magnetic domains</topic><topic>Magnetic nanoparticle</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Nanoparticles</topic><topic>Particle size</topic><topic>Samarium</topic><topic>SmFeO3</topic><topic>Spin valves</topic><topic>SQUID magnetic measurements</topic><topic>Temperature dependence</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali Khan, Azam</creatorcontrib><creatorcontrib>Ahlawat, Anju</creatorcontrib><creatorcontrib>Deshmukh, Pratik</creatorcontrib><creatorcontrib>Sharma, R.K.</creatorcontrib><creatorcontrib>VelagaSrihari</creatorcontrib><creatorcontrib>Singh, Rashmi</creatorcontrib><creatorcontrib>Vaish, Rahul</creatorcontrib><creatorcontrib>Karnal, A.K.</creatorcontrib><creatorcontrib>Satapathy, S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali Khan, Azam</au><au>Ahlawat, Anju</au><au>Deshmukh, Pratik</au><au>Sharma, R.K.</au><au>VelagaSrihari</au><au>Singh, Rashmi</au><au>Vaish, Rahul</au><au>Karnal, A.K.</au><au>Satapathy, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of AFM and FM exchange interaction on magnetic anisotropy properties of single domain SmFeO3 at nanoscale</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>502</volume><spage>166505</spage><pages>166505-</pages><artnum>166505</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>[Display omitted]
•The magnetic behavior of the SFO depends on particle size and initial magnetic state.•Magneto crystalline anisotropy and unidirectional anisotropy of SFO depend on temperature.•Remnant magnetization, M−H behavior and Coercive field are highly dependent on particle size.•The particles remain in single domain state up to ~170 nm (critical size).•Coercive magnetic field and magnetization increases with particle size up to (~170 nm).•The single domain nanoparticle magnetic behavior is different to that of multi domain bulk.•At low temperature AFM and FM interaction leads to unidirectional anisotropy rotation of spins.•The compensation temperature is higher (~13 K) in nano-SFO compare to that of bulk (~4K).•Sm3+ spin unidirectional magnetic anisotropy is more effective in between ~13 K to ~65 K.•Fe3+ spin unidirectional anisotropy is effective beyond ~65 K.•Sm3+ spins can be rotated at ±50 Oe due to unidirectional anisotropy at low temperature.
Multifunctional Samarium orthoferrites (SmFeO3) nano-particles have been studying extensively due to their applications in digital memory, ultrafast switching, temperature dependent spin valves and sensor applications. Magnetic properties of SFO were investigated by varying particle size, initial magnetic state of material and applied field under Zero Field Cooling (ZFC) and Field Cooling (FC) protocol. It was found that the remnant magnetization, M−H behavior and coercive field are extremely dependent on particle size. It was also found that the magnetic behavior of single domain SFO nanoparticle is completely different to that of multi domain bulk due to uniaxial magneto crystalline anisotropy. The magnetization vs temperature (M−T) behavior of nano-particle depends on unidirectional anisotropy along with uniaxial magneto-crystalline anisotropy of SFO. The Sm3+ spin ordering in nano-SFO compensates to that of Fe3+ spin ordering at higher temperature (~13 K) compare to that of bulk (~4K). The Sm3+ spin unidirectional magnetic anisotropy is more effective in between ~13 K to ~65 K and Fe3+ spin unidirectional anisotropy is effective at higher temperature beyond ~65 K. Magnetically poled nano-particles show completely different behavior to that of non-poled nano-SFO particles at low temperature. In nutshell, the manuscript shows why one can’t predict the magnetic behavior of the SFO without knowing its particle or grain size, initial magnetic state of the particle, procedure of measurement, the magnitude of applied field and temperature etc., since all these affects the magneto crystalline anisotropy as well as unidirectional anisotropy of SFO.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2020.166505</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2020-05, Vol.502, p.166505, Article 166505 |
issn | 0304-8853 1873-4766 |
language | eng |
recordid | cdi_proquest_journals_2441310322 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Anisotropy Coercivity Cooling Crystal structure Crystallinity Grain size Low temperature Magnetic anisotropy Magnetic domains Magnetic nanoparticle Magnetic properties Magnetism Magnetization Nanoparticles Particle size Samarium SmFeO3 Spin valves SQUID magnetic measurements Temperature dependence Transmission electron microscopy |
title | Effect of AFM and FM exchange interaction on magnetic anisotropy properties of single domain SmFeO3 at nanoscale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20AFM%20and%20FM%20exchange%20interaction%20on%20magnetic%20anisotropy%20properties%20of%20single%20domain%20SmFeO3%20at%20nanoscale&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Ali%20Khan,%20Azam&rft.date=2020-05-15&rft.volume=502&rft.spage=166505&rft.pages=166505-&rft.artnum=166505&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2020.166505&rft_dat=%3Cproquest_cross%3E2441310322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441310322&rft_id=info:pmid/&rft_els_id=S0304885319326654&rfr_iscdi=true |