One-class support vector classifiers: A survey
Over the past two decades, one-class classification (OCC) becomes very popular due to its diversified applicability in data mining and pattern recognition problems. Concerning to OCC, one-class support vector classifiers (OCSVCs) have been extensively studied and improved for the technology-driven a...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2020-05, Vol.196, p.105754, Article 105754 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105754 |
container_title | Knowledge-based systems |
container_volume | 196 |
creator | Alam, Shamshe Sonbhadra, Sanjay Kumar Agarwal, Sonali Nagabhushan, P. |
description | Over the past two decades, one-class classification (OCC) becomes very popular due to its diversified applicability in data mining and pattern recognition problems. Concerning to OCC, one-class support vector classifiers (OCSVCs) have been extensively studied and improved for the technology-driven applications; still, there is no comprehensive literature available to guide researchers for future exploration. This survey paper presents an up to date, structured and well-organized review on one-class support vector classifiers. This survey comprises available algorithms, parameter estimation techniques, feature selection strategies, sample reduction methodologies, workability in distributed environment and application domains related to OCSVCs. In this way, this paper offers a detailed overview to researchers looking for the state-of-the-art in this area. |
doi_str_mv | 10.1016/j.knosys.2020.105754 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441309173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705120301647</els_id><sourcerecordid>2441309173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-347f02b4cab3c5bec0245d6ec9a4ed8e49fd7a94257803b65b85e7148720fb7e3</originalsourceid><addsrcrecordid>eNp9UE1Lw0AQXUTBWv0HHgKeE2e_uokHoRS_oNCLnpdkM4HEmo07SaH_3q3x7GngzXtv5j3GbjlkHPjqvss-e09HygSIE6SNVmdswXMjUqOgOGcLKDSkBjS_ZFdEHQAIwfMFy3Y9pm5fEiU0DYMPY3JAN_qQ_IJt02Kgh2Qdt-GAx2t20ZR7wpu_uWQfz0_vm9d0u3t526y3qZNSjalUpgFRKVdW0ukKHQil6xW6olRY56iKpjZloYQ2Ochqpatco-EqPgxNZVAu2d3sOwT_PSGNtvNT6ONJK5TiEgpuZGSpmeWCJwrY2CG0X2U4Wg721Izt7NyMPTVj52ai7HGWYUxwiAEtuRZ7h3UbYnZb-_Z_gx-WVW1Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441309173</pqid></control><display><type>article</type><title>One-class support vector classifiers: A survey</title><source>Elsevier ScienceDirect Journals</source><creator>Alam, Shamshe ; Sonbhadra, Sanjay Kumar ; Agarwal, Sonali ; Nagabhushan, P.</creator><creatorcontrib>Alam, Shamshe ; Sonbhadra, Sanjay Kumar ; Agarwal, Sonali ; Nagabhushan, P.</creatorcontrib><description>Over the past two decades, one-class classification (OCC) becomes very popular due to its diversified applicability in data mining and pattern recognition problems. Concerning to OCC, one-class support vector classifiers (OCSVCs) have been extensively studied and improved for the technology-driven applications; still, there is no comprehensive literature available to guide researchers for future exploration. This survey paper presents an up to date, structured and well-organized review on one-class support vector classifiers. This survey comprises available algorithms, parameter estimation techniques, feature selection strategies, sample reduction methodologies, workability in distributed environment and application domains related to OCSVCs. In this way, this paper offers a detailed overview to researchers looking for the state-of-the-art in this area.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2020.105754</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Classifiers ; Data mining ; Distributed environment ; Feature selection ; One-class classification (OCC) ; One-class support vector classifiers (OCSVCs) ; Parameter estimation ; Pattern recognition ; Researchers ; Sample reduction ; Workability</subject><ispartof>Knowledge-based systems, 2020-05, Vol.196, p.105754, Article 105754</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. May 21, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-347f02b4cab3c5bec0245d6ec9a4ed8e49fd7a94257803b65b85e7148720fb7e3</citedby><cites>FETCH-LOGICAL-c334t-347f02b4cab3c5bec0245d6ec9a4ed8e49fd7a94257803b65b85e7148720fb7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705120301647$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Alam, Shamshe</creatorcontrib><creatorcontrib>Sonbhadra, Sanjay Kumar</creatorcontrib><creatorcontrib>Agarwal, Sonali</creatorcontrib><creatorcontrib>Nagabhushan, P.</creatorcontrib><title>One-class support vector classifiers: A survey</title><title>Knowledge-based systems</title><description>Over the past two decades, one-class classification (OCC) becomes very popular due to its diversified applicability in data mining and pattern recognition problems. Concerning to OCC, one-class support vector classifiers (OCSVCs) have been extensively studied and improved for the technology-driven applications; still, there is no comprehensive literature available to guide researchers for future exploration. This survey paper presents an up to date, structured and well-organized review on one-class support vector classifiers. This survey comprises available algorithms, parameter estimation techniques, feature selection strategies, sample reduction methodologies, workability in distributed environment and application domains related to OCSVCs. In this way, this paper offers a detailed overview to researchers looking for the state-of-the-art in this area.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Data mining</subject><subject>Distributed environment</subject><subject>Feature selection</subject><subject>One-class classification (OCC)</subject><subject>One-class support vector classifiers (OCSVCs)</subject><subject>Parameter estimation</subject><subject>Pattern recognition</subject><subject>Researchers</subject><subject>Sample reduction</subject><subject>Workability</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Lw0AQXUTBWv0HHgKeE2e_uokHoRS_oNCLnpdkM4HEmo07SaH_3q3x7GngzXtv5j3GbjlkHPjqvss-e09HygSIE6SNVmdswXMjUqOgOGcLKDSkBjS_ZFdEHQAIwfMFy3Y9pm5fEiU0DYMPY3JAN_qQ_IJt02Kgh2Qdt-GAx2t20ZR7wpu_uWQfz0_vm9d0u3t526y3qZNSjalUpgFRKVdW0ukKHQil6xW6olRY56iKpjZloYQ2Ochqpatco-EqPgxNZVAu2d3sOwT_PSGNtvNT6ONJK5TiEgpuZGSpmeWCJwrY2CG0X2U4Wg721Izt7NyMPTVj52ai7HGWYUxwiAEtuRZ7h3UbYnZb-_Z_gx-WVW1Y</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Alam, Shamshe</creator><creator>Sonbhadra, Sanjay Kumar</creator><creator>Agarwal, Sonali</creator><creator>Nagabhushan, P.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200521</creationdate><title>One-class support vector classifiers: A survey</title><author>Alam, Shamshe ; Sonbhadra, Sanjay Kumar ; Agarwal, Sonali ; Nagabhushan, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-347f02b4cab3c5bec0245d6ec9a4ed8e49fd7a94257803b65b85e7148720fb7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Data mining</topic><topic>Distributed environment</topic><topic>Feature selection</topic><topic>One-class classification (OCC)</topic><topic>One-class support vector classifiers (OCSVCs)</topic><topic>Parameter estimation</topic><topic>Pattern recognition</topic><topic>Researchers</topic><topic>Sample reduction</topic><topic>Workability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alam, Shamshe</creatorcontrib><creatorcontrib>Sonbhadra, Sanjay Kumar</creatorcontrib><creatorcontrib>Agarwal, Sonali</creatorcontrib><creatorcontrib>Nagabhushan, P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Shamshe</au><au>Sonbhadra, Sanjay Kumar</au><au>Agarwal, Sonali</au><au>Nagabhushan, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-class support vector classifiers: A survey</atitle><jtitle>Knowledge-based systems</jtitle><date>2020-05-21</date><risdate>2020</risdate><volume>196</volume><spage>105754</spage><pages>105754-</pages><artnum>105754</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Over the past two decades, one-class classification (OCC) becomes very popular due to its diversified applicability in data mining and pattern recognition problems. Concerning to OCC, one-class support vector classifiers (OCSVCs) have been extensively studied and improved for the technology-driven applications; still, there is no comprehensive literature available to guide researchers for future exploration. This survey paper presents an up to date, structured and well-organized review on one-class support vector classifiers. This survey comprises available algorithms, parameter estimation techniques, feature selection strategies, sample reduction methodologies, workability in distributed environment and application domains related to OCSVCs. In this way, this paper offers a detailed overview to researchers looking for the state-of-the-art in this area.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2020.105754</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2020-05, Vol.196, p.105754, Article 105754 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_journals_2441309173 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Classifiers Data mining Distributed environment Feature selection One-class classification (OCC) One-class support vector classifiers (OCSVCs) Parameter estimation Pattern recognition Researchers Sample reduction Workability |
title | One-class support vector classifiers: A survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-class%20support%20vector%20classifiers:%20A%20survey&rft.jtitle=Knowledge-based%20systems&rft.au=Alam,%20Shamshe&rft.date=2020-05-21&rft.volume=196&rft.spage=105754&rft.pages=105754-&rft.artnum=105754&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2020.105754&rft_dat=%3Cproquest_cross%3E2441309173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441309173&rft_id=info:pmid/&rft_els_id=S0950705120301647&rfr_iscdi=true |