One-class support vector classifiers: A survey

Over the past two decades, one-class classification (OCC) becomes very popular due to its diversified applicability in data mining and pattern recognition problems. Concerning to OCC, one-class support vector classifiers (OCSVCs) have been extensively studied and improved for the technology-driven a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2020-05, Vol.196, p.105754, Article 105754
Hauptverfasser: Alam, Shamshe, Sonbhadra, Sanjay Kumar, Agarwal, Sonali, Nagabhushan, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105754
container_title Knowledge-based systems
container_volume 196
creator Alam, Shamshe
Sonbhadra, Sanjay Kumar
Agarwal, Sonali
Nagabhushan, P.
description Over the past two decades, one-class classification (OCC) becomes very popular due to its diversified applicability in data mining and pattern recognition problems. Concerning to OCC, one-class support vector classifiers (OCSVCs) have been extensively studied and improved for the technology-driven applications; still, there is no comprehensive literature available to guide researchers for future exploration. This survey paper presents an up to date, structured and well-organized review on one-class support vector classifiers. This survey comprises available algorithms, parameter estimation techniques, feature selection strategies, sample reduction methodologies, workability in distributed environment and application domains related to OCSVCs. In this way, this paper offers a detailed overview to researchers looking for the state-of-the-art in this area.
doi_str_mv 10.1016/j.knosys.2020.105754
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441309173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705120301647</els_id><sourcerecordid>2441309173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-347f02b4cab3c5bec0245d6ec9a4ed8e49fd7a94257803b65b85e7148720fb7e3</originalsourceid><addsrcrecordid>eNp9UE1Lw0AQXUTBWv0HHgKeE2e_uokHoRS_oNCLnpdkM4HEmo07SaH_3q3x7GngzXtv5j3GbjlkHPjqvss-e09HygSIE6SNVmdswXMjUqOgOGcLKDSkBjS_ZFdEHQAIwfMFy3Y9pm5fEiU0DYMPY3JAN_qQ_IJt02Kgh2Qdt-GAx2t20ZR7wpu_uWQfz0_vm9d0u3t526y3qZNSjalUpgFRKVdW0ukKHQil6xW6olRY56iKpjZloYQ2Ochqpatco-EqPgxNZVAu2d3sOwT_PSGNtvNT6ONJK5TiEgpuZGSpmeWCJwrY2CG0X2U4Wg721Izt7NyMPTVj52ai7HGWYUxwiAEtuRZ7h3UbYnZb-_Z_gx-WVW1Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441309173</pqid></control><display><type>article</type><title>One-class support vector classifiers: A survey</title><source>Elsevier ScienceDirect Journals</source><creator>Alam, Shamshe ; Sonbhadra, Sanjay Kumar ; Agarwal, Sonali ; Nagabhushan, P.</creator><creatorcontrib>Alam, Shamshe ; Sonbhadra, Sanjay Kumar ; Agarwal, Sonali ; Nagabhushan, P.</creatorcontrib><description>Over the past two decades, one-class classification (OCC) becomes very popular due to its diversified applicability in data mining and pattern recognition problems. Concerning to OCC, one-class support vector classifiers (OCSVCs) have been extensively studied and improved for the technology-driven applications; still, there is no comprehensive literature available to guide researchers for future exploration. This survey paper presents an up to date, structured and well-organized review on one-class support vector classifiers. This survey comprises available algorithms, parameter estimation techniques, feature selection strategies, sample reduction methodologies, workability in distributed environment and application domains related to OCSVCs. In this way, this paper offers a detailed overview to researchers looking for the state-of-the-art in this area.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2020.105754</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Classifiers ; Data mining ; Distributed environment ; Feature selection ; One-class classification (OCC) ; One-class support vector classifiers (OCSVCs) ; Parameter estimation ; Pattern recognition ; Researchers ; Sample reduction ; Workability</subject><ispartof>Knowledge-based systems, 2020-05, Vol.196, p.105754, Article 105754</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. May 21, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-347f02b4cab3c5bec0245d6ec9a4ed8e49fd7a94257803b65b85e7148720fb7e3</citedby><cites>FETCH-LOGICAL-c334t-347f02b4cab3c5bec0245d6ec9a4ed8e49fd7a94257803b65b85e7148720fb7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705120301647$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Alam, Shamshe</creatorcontrib><creatorcontrib>Sonbhadra, Sanjay Kumar</creatorcontrib><creatorcontrib>Agarwal, Sonali</creatorcontrib><creatorcontrib>Nagabhushan, P.</creatorcontrib><title>One-class support vector classifiers: A survey</title><title>Knowledge-based systems</title><description>Over the past two decades, one-class classification (OCC) becomes very popular due to its diversified applicability in data mining and pattern recognition problems. Concerning to OCC, one-class support vector classifiers (OCSVCs) have been extensively studied and improved for the technology-driven applications; still, there is no comprehensive literature available to guide researchers for future exploration. This survey paper presents an up to date, structured and well-organized review on one-class support vector classifiers. This survey comprises available algorithms, parameter estimation techniques, feature selection strategies, sample reduction methodologies, workability in distributed environment and application domains related to OCSVCs. In this way, this paper offers a detailed overview to researchers looking for the state-of-the-art in this area.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Data mining</subject><subject>Distributed environment</subject><subject>Feature selection</subject><subject>One-class classification (OCC)</subject><subject>One-class support vector classifiers (OCSVCs)</subject><subject>Parameter estimation</subject><subject>Pattern recognition</subject><subject>Researchers</subject><subject>Sample reduction</subject><subject>Workability</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Lw0AQXUTBWv0HHgKeE2e_uokHoRS_oNCLnpdkM4HEmo07SaH_3q3x7GngzXtv5j3GbjlkHPjqvss-e09HygSIE6SNVmdswXMjUqOgOGcLKDSkBjS_ZFdEHQAIwfMFy3Y9pm5fEiU0DYMPY3JAN_qQ_IJt02Kgh2Qdt-GAx2t20ZR7wpu_uWQfz0_vm9d0u3t526y3qZNSjalUpgFRKVdW0ukKHQil6xW6olRY56iKpjZloYQ2Ochqpatco-EqPgxNZVAu2d3sOwT_PSGNtvNT6ONJK5TiEgpuZGSpmeWCJwrY2CG0X2U4Wg721Izt7NyMPTVj52ai7HGWYUxwiAEtuRZ7h3UbYnZb-_Z_gx-WVW1Y</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Alam, Shamshe</creator><creator>Sonbhadra, Sanjay Kumar</creator><creator>Agarwal, Sonali</creator><creator>Nagabhushan, P.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200521</creationdate><title>One-class support vector classifiers: A survey</title><author>Alam, Shamshe ; Sonbhadra, Sanjay Kumar ; Agarwal, Sonali ; Nagabhushan, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-347f02b4cab3c5bec0245d6ec9a4ed8e49fd7a94257803b65b85e7148720fb7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Data mining</topic><topic>Distributed environment</topic><topic>Feature selection</topic><topic>One-class classification (OCC)</topic><topic>One-class support vector classifiers (OCSVCs)</topic><topic>Parameter estimation</topic><topic>Pattern recognition</topic><topic>Researchers</topic><topic>Sample reduction</topic><topic>Workability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alam, Shamshe</creatorcontrib><creatorcontrib>Sonbhadra, Sanjay Kumar</creatorcontrib><creatorcontrib>Agarwal, Sonali</creatorcontrib><creatorcontrib>Nagabhushan, P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Shamshe</au><au>Sonbhadra, Sanjay Kumar</au><au>Agarwal, Sonali</au><au>Nagabhushan, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-class support vector classifiers: A survey</atitle><jtitle>Knowledge-based systems</jtitle><date>2020-05-21</date><risdate>2020</risdate><volume>196</volume><spage>105754</spage><pages>105754-</pages><artnum>105754</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Over the past two decades, one-class classification (OCC) becomes very popular due to its diversified applicability in data mining and pattern recognition problems. Concerning to OCC, one-class support vector classifiers (OCSVCs) have been extensively studied and improved for the technology-driven applications; still, there is no comprehensive literature available to guide researchers for future exploration. This survey paper presents an up to date, structured and well-organized review on one-class support vector classifiers. This survey comprises available algorithms, parameter estimation techniques, feature selection strategies, sample reduction methodologies, workability in distributed environment and application domains related to OCSVCs. In this way, this paper offers a detailed overview to researchers looking for the state-of-the-art in this area.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2020.105754</doi></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2020-05, Vol.196, p.105754, Article 105754
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2441309173
source Elsevier ScienceDirect Journals
subjects Algorithms
Classifiers
Data mining
Distributed environment
Feature selection
One-class classification (OCC)
One-class support vector classifiers (OCSVCs)
Parameter estimation
Pattern recognition
Researchers
Sample reduction
Workability
title One-class support vector classifiers: A survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-class%20support%20vector%20classifiers:%20A%20survey&rft.jtitle=Knowledge-based%20systems&rft.au=Alam,%20Shamshe&rft.date=2020-05-21&rft.volume=196&rft.spage=105754&rft.pages=105754-&rft.artnum=105754&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2020.105754&rft_dat=%3Cproquest_cross%3E2441309173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441309173&rft_id=info:pmid/&rft_els_id=S0950705120301647&rfr_iscdi=true