Personalized location recommendation by fusing sentimental and spatial context

Internet users would like to obtain interesting location information for a travel. With the rapid development of social media, many kinds of location recommender systems are proposed in recent years. Existing methods mostly focus on mining user check-in information that could be leveraged to underst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2020-05, Vol.196, p.105849, Article 105849
Hauptverfasser: Zhao, Guoshuai, Lou, Peiliang, Qian, Xueming, Hou, Xingsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105849
container_title Knowledge-based systems
container_volume 196
creator Zhao, Guoshuai
Lou, Peiliang
Qian, Xueming
Hou, Xingsong
description Internet users would like to obtain interesting location information for a travel. With the rapid development of social media, many kinds of location recommender systems are proposed in recent years. Existing methods mostly focus on mining user check-in information that could be leveraged to understand their trajectories. However, the characteristics and attributes of geographical locations also play an important role in recommender systems. In this paper, sentimental attributes of locations are explored and we propose a Point of Interest (POI) mining method and a personalized recommendation model by fusing sentimental spatial context. First, a Sentimental–Spatial POI Mining (SPM) method is utilized to mine the POIs by fusing the sentimental and geographical attributes of locations. Second, we recommend the POIs to users by a Sentimental–Spatial POI Recommendation (SPR) model incorporating the factors of sentiment similarity and geographical distance. Last, the advantages and superior performance of our methods are demonstrated by extensive experiments on a real-world dataset.
doi_str_mv 10.1016/j.knosys.2020.105849
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441308722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705120302161</els_id><sourcerecordid>2441308722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-fdc00a8060cf401a8a1a77d62f9a441fadb72b0149dd11ce04c9c6f12e37b9503</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wMWA66k3mXQeG0GKLxB1oeuQSW4k4zSpSSrWX2_KuHZ1X-ceOB8h5xQWFGh9OSw-nI-7uGDA9qtly7sDMqNtw8qGQ3dIZtAtoWxgSY_JSYwDADBG2xl5esEQvZOj_UFdjF7JZL0rAiq_XqPT09jvCrON1r0XEV2y-ZDkWEini7jJitwr7xJ-p1NyZOQY8eyvzsnb7c3r6r58fL57WF0_lqqqeCqNVgCyhRqU4UBlK6lsGl0z00nOqZG6b1gPlHdaU6oQuOpUbSjDqulzkmpOLibfTfCfW4xJDH4bcowoWDaoIEdnWcUnlQo-xoBGbIJdy7ATFMSenBjERE7syYmJXH67mt4wJ_iyGERUFp1CbTOXJLS3_xv8AsHoemI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441308722</pqid></control><display><type>article</type><title>Personalized location recommendation by fusing sentimental and spatial context</title><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Guoshuai ; Lou, Peiliang ; Qian, Xueming ; Hou, Xingsong</creator><creatorcontrib>Zhao, Guoshuai ; Lou, Peiliang ; Qian, Xueming ; Hou, Xingsong</creatorcontrib><description>Internet users would like to obtain interesting location information for a travel. With the rapid development of social media, many kinds of location recommender systems are proposed in recent years. Existing methods mostly focus on mining user check-in information that could be leveraged to understand their trajectories. However, the characteristics and attributes of geographical locations also play an important role in recommender systems. In this paper, sentimental attributes of locations are explored and we propose a Point of Interest (POI) mining method and a personalized recommendation model by fusing sentimental spatial context. First, a Sentimental–Spatial POI Mining (SPM) method is utilized to mine the POIs by fusing the sentimental and geographical attributes of locations. Second, we recommend the POIs to users by a Sentimental–Spatial POI Recommendation (SPR) model incorporating the factors of sentiment similarity and geographical distance. Last, the advantages and superior performance of our methods are demonstrated by extensive experiments on a real-world dataset.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2020.105849</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Context ; Data mining ; Digital media ; Geographical locations ; Location based social network ; Mining ; POI recommendation ; Recommender system ; Recommender systems ; Sentiment analysis</subject><ispartof>Knowledge-based systems, 2020-05, Vol.196, p.105849, Article 105849</ispartof><rights>2020</rights><rights>Copyright Elsevier Science Ltd. May 21, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-fdc00a8060cf401a8a1a77d62f9a441fadb72b0149dd11ce04c9c6f12e37b9503</citedby><cites>FETCH-LOGICAL-c334t-fdc00a8060cf401a8a1a77d62f9a441fadb72b0149dd11ce04c9c6f12e37b9503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705120302161$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhao, Guoshuai</creatorcontrib><creatorcontrib>Lou, Peiliang</creatorcontrib><creatorcontrib>Qian, Xueming</creatorcontrib><creatorcontrib>Hou, Xingsong</creatorcontrib><title>Personalized location recommendation by fusing sentimental and spatial context</title><title>Knowledge-based systems</title><description>Internet users would like to obtain interesting location information for a travel. With the rapid development of social media, many kinds of location recommender systems are proposed in recent years. Existing methods mostly focus on mining user check-in information that could be leveraged to understand their trajectories. However, the characteristics and attributes of geographical locations also play an important role in recommender systems. In this paper, sentimental attributes of locations are explored and we propose a Point of Interest (POI) mining method and a personalized recommendation model by fusing sentimental spatial context. First, a Sentimental–Spatial POI Mining (SPM) method is utilized to mine the POIs by fusing the sentimental and geographical attributes of locations. Second, we recommend the POIs to users by a Sentimental–Spatial POI Recommendation (SPR) model incorporating the factors of sentiment similarity and geographical distance. Last, the advantages and superior performance of our methods are demonstrated by extensive experiments on a real-world dataset.</description><subject>Context</subject><subject>Data mining</subject><subject>Digital media</subject><subject>Geographical locations</subject><subject>Location based social network</subject><subject>Mining</subject><subject>POI recommendation</subject><subject>Recommender system</subject><subject>Recommender systems</subject><subject>Sentiment analysis</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wMWA66k3mXQeG0GKLxB1oeuQSW4k4zSpSSrWX2_KuHZ1X-ceOB8h5xQWFGh9OSw-nI-7uGDA9qtly7sDMqNtw8qGQ3dIZtAtoWxgSY_JSYwDADBG2xl5esEQvZOj_UFdjF7JZL0rAiq_XqPT09jvCrON1r0XEV2y-ZDkWEini7jJitwr7xJ-p1NyZOQY8eyvzsnb7c3r6r58fL57WF0_lqqqeCqNVgCyhRqU4UBlK6lsGl0z00nOqZG6b1gPlHdaU6oQuOpUbSjDqulzkmpOLibfTfCfW4xJDH4bcowoWDaoIEdnWcUnlQo-xoBGbIJdy7ATFMSenBjERE7syYmJXH67mt4wJ_iyGERUFp1CbTOXJLS3_xv8AsHoemI</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Zhao, Guoshuai</creator><creator>Lou, Peiliang</creator><creator>Qian, Xueming</creator><creator>Hou, Xingsong</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200521</creationdate><title>Personalized location recommendation by fusing sentimental and spatial context</title><author>Zhao, Guoshuai ; Lou, Peiliang ; Qian, Xueming ; Hou, Xingsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-fdc00a8060cf401a8a1a77d62f9a441fadb72b0149dd11ce04c9c6f12e37b9503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Context</topic><topic>Data mining</topic><topic>Digital media</topic><topic>Geographical locations</topic><topic>Location based social network</topic><topic>Mining</topic><topic>POI recommendation</topic><topic>Recommender system</topic><topic>Recommender systems</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Guoshuai</creatorcontrib><creatorcontrib>Lou, Peiliang</creatorcontrib><creatorcontrib>Qian, Xueming</creatorcontrib><creatorcontrib>Hou, Xingsong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Guoshuai</au><au>Lou, Peiliang</au><au>Qian, Xueming</au><au>Hou, Xingsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personalized location recommendation by fusing sentimental and spatial context</atitle><jtitle>Knowledge-based systems</jtitle><date>2020-05-21</date><risdate>2020</risdate><volume>196</volume><spage>105849</spage><pages>105849-</pages><artnum>105849</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Internet users would like to obtain interesting location information for a travel. With the rapid development of social media, many kinds of location recommender systems are proposed in recent years. Existing methods mostly focus on mining user check-in information that could be leveraged to understand their trajectories. However, the characteristics and attributes of geographical locations also play an important role in recommender systems. In this paper, sentimental attributes of locations are explored and we propose a Point of Interest (POI) mining method and a personalized recommendation model by fusing sentimental spatial context. First, a Sentimental–Spatial POI Mining (SPM) method is utilized to mine the POIs by fusing the sentimental and geographical attributes of locations. Second, we recommend the POIs to users by a Sentimental–Spatial POI Recommendation (SPR) model incorporating the factors of sentiment similarity and geographical distance. Last, the advantages and superior performance of our methods are demonstrated by extensive experiments on a real-world dataset.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2020.105849</doi></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2020-05, Vol.196, p.105849, Article 105849
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2441308722
source Elsevier ScienceDirect Journals
subjects Context
Data mining
Digital media
Geographical locations
Location based social network
Mining
POI recommendation
Recommender system
Recommender systems
Sentiment analysis
title Personalized location recommendation by fusing sentimental and spatial context
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personalized%20location%20recommendation%20by%20fusing%20sentimental%20and%20spatial%20context&rft.jtitle=Knowledge-based%20systems&rft.au=Zhao,%20Guoshuai&rft.date=2020-05-21&rft.volume=196&rft.spage=105849&rft.pages=105849-&rft.artnum=105849&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2020.105849&rft_dat=%3Cproquest_cross%3E2441308722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441308722&rft_id=info:pmid/&rft_els_id=S0950705120302161&rfr_iscdi=true