Planar MgxZn1-xO-based perovskite solar cell with superior ultraviolet light stability

Generally, TiO2-based perovskite solar cell (PSC) is beneficial to high efficiency but poor ultraviolet (UV) light stability. Here, we report that a highly efficient MgxZn1-xO-based (MZO-based) PSC with excellent UV light stability. MZO has a higher electron mobility and deeper conduction band than...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2020-05, Vol.208, p.110417, Article 110417
Hauptverfasser: Han, Fei, Wan, Zhongquan, Luo, Junsheng, Xia, Jianxing, Shu, Hongyu, Jia, Chunyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110417
container_title Solar energy materials and solar cells
container_volume 208
creator Han, Fei
Wan, Zhongquan
Luo, Junsheng
Xia, Jianxing
Shu, Hongyu
Jia, Chunyang
description Generally, TiO2-based perovskite solar cell (PSC) is beneficial to high efficiency but poor ultraviolet (UV) light stability. Here, we report that a highly efficient MgxZn1-xO-based (MZO-based) PSC with excellent UV light stability. MZO has a higher electron mobility and deeper conduction band than traditional TiO2, which can reduce the charge accumulation at the MZO/perovskite interface and enhance the charge transfer from perovskite to MZO. Furthermore, the reduced interface loss and energy barrier are beneficial to obtain high open-circuit voltage (Voc). By optimizing, the MZO-based device shows a high Voc of 1.11 V, yielding a promising efficiency of 19.57%. The MZO-based device (unencapsulated) retains 76% of its initial short-circuit current density (Jsc) after 1 year air aging (room temperature, relative humidity: 40–80%) and 8 h UV irradiation (365 nm, 35 W), versus only 12% under the same condition for TiO2-based device. The good UV light stability of MZO-based device can be attributed to the reduced electron trap-state density in MZO electron-transporting layer (ETL). Specifically, zinc interstitial and oxygen vacancy mediated defect sites of MZO ETL are effectively passivated, which tightly protects the perovskite layer from degradation under UV light. Our results show a great potential for MZO ETL application in UV-stable PSC. [Display omitted] •A wet-chemical route for low-temperature MgxZn1-xO nanocrystals is reported.•The champion PCE of MgxZn1-xO-based perovskite solar cell is 19.57%.•The Voc is 1.11 V, keeping up with that (1.11 V) of SnO2-based n-i-p device.•Device retains 76% of initial Jsc after 1 year air aging and 8 h UV irradiation.
doi_str_mv 10.1016/j.solmat.2020.110417
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441308605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024820300246</els_id><sourcerecordid>2441308605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-bb718306fa3bc51b82b910e144faaae3135e586d96261a37c8fa746e324ed16e3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwDzhE4pziV5zkgoQQL6moHIADF8tJNq2DGxfbKe2_x1U4cxppd2ZW-yF0SfCMYCKuu5m3Zq3CjGIaRwRzkh-hCSnyMmWsLI7RBJc0TzHlxSk6877DGFPB-AR9vBrVK5e8LHefPUl3i7RSHppkA85u_ZcOkMTuaKjBmORHh1Xih7jU1iWDCU5ttTUQEqOXq5D4oCptdNifo5NWGQ8XfzpF7w_3b3dP6Xzx-Hx3O09rxnhIqyonBcOiVayqM1IVtCoJBsJ5q5QCRlgGWSGaUlBBFMvrolU5F8Aoh4ZEnaKrsXfj7PcAPsjODq6PJyXlnDBcCJxFFx9dtbPeO2jlxum1cntJsDwQlJ0cCcoDQTkSjLGbMQbxg60GJ32toa-h0Q7qIBur_y_4BfelfCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441308605</pqid></control><display><type>article</type><title>Planar MgxZn1-xO-based perovskite solar cell with superior ultraviolet light stability</title><source>Access via ScienceDirect (Elsevier)</source><creator>Han, Fei ; Wan, Zhongquan ; Luo, Junsheng ; Xia, Jianxing ; Shu, Hongyu ; Jia, Chunyang</creator><creatorcontrib>Han, Fei ; Wan, Zhongquan ; Luo, Junsheng ; Xia, Jianxing ; Shu, Hongyu ; Jia, Chunyang</creatorcontrib><description>Generally, TiO2-based perovskite solar cell (PSC) is beneficial to high efficiency but poor ultraviolet (UV) light stability. Here, we report that a highly efficient MgxZn1-xO-based (MZO-based) PSC with excellent UV light stability. MZO has a higher electron mobility and deeper conduction band than traditional TiO2, which can reduce the charge accumulation at the MZO/perovskite interface and enhance the charge transfer from perovskite to MZO. Furthermore, the reduced interface loss and energy barrier are beneficial to obtain high open-circuit voltage (Voc). By optimizing, the MZO-based device shows a high Voc of 1.11 V, yielding a promising efficiency of 19.57%. The MZO-based device (unencapsulated) retains 76% of its initial short-circuit current density (Jsc) after 1 year air aging (room temperature, relative humidity: 40–80%) and 8 h UV irradiation (365 nm, 35 W), versus only 12% under the same condition for TiO2-based device. The good UV light stability of MZO-based device can be attributed to the reduced electron trap-state density in MZO electron-transporting layer (ETL). Specifically, zinc interstitial and oxygen vacancy mediated defect sites of MZO ETL are effectively passivated, which tightly protects the perovskite layer from degradation under UV light. Our results show a great potential for MZO ETL application in UV-stable PSC. [Display omitted] •A wet-chemical route for low-temperature MgxZn1-xO nanocrystals is reported.•The champion PCE of MgxZn1-xO-based perovskite solar cell is 19.57%.•The Voc is 1.11 V, keeping up with that (1.11 V) of SnO2-based n-i-p device.•Device retains 76% of initial Jsc after 1 year air aging and 8 h UV irradiation.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2020.110417</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aging ; Air temperature ; Charge transfer ; Circuits ; Conduction ; Conduction bands ; Electron mobility ; Electron transport ; Electron-transporting material ; Irradiation ; MgxZn1-xO ; Open circuit voltage ; Perovskite solar cell ; Perovskites ; Photodegradation ; Photovoltaic cells ; Relative humidity ; Room temperature ; Short circuit currents ; Short-circuit current ; Solar cells ; Stability ; Titanium dioxide ; Ultraviolet light stability ; Ultraviolet radiation</subject><ispartof>Solar energy materials and solar cells, 2020-05, Vol.208, p.110417, Article 110417</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-bb718306fa3bc51b82b910e144faaae3135e586d96261a37c8fa746e324ed16e3</citedby><cites>FETCH-LOGICAL-c334t-bb718306fa3bc51b82b910e144faaae3135e586d96261a37c8fa746e324ed16e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2020.110417$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Han, Fei</creatorcontrib><creatorcontrib>Wan, Zhongquan</creatorcontrib><creatorcontrib>Luo, Junsheng</creatorcontrib><creatorcontrib>Xia, Jianxing</creatorcontrib><creatorcontrib>Shu, Hongyu</creatorcontrib><creatorcontrib>Jia, Chunyang</creatorcontrib><title>Planar MgxZn1-xO-based perovskite solar cell with superior ultraviolet light stability</title><title>Solar energy materials and solar cells</title><description>Generally, TiO2-based perovskite solar cell (PSC) is beneficial to high efficiency but poor ultraviolet (UV) light stability. Here, we report that a highly efficient MgxZn1-xO-based (MZO-based) PSC with excellent UV light stability. MZO has a higher electron mobility and deeper conduction band than traditional TiO2, which can reduce the charge accumulation at the MZO/perovskite interface and enhance the charge transfer from perovskite to MZO. Furthermore, the reduced interface loss and energy barrier are beneficial to obtain high open-circuit voltage (Voc). By optimizing, the MZO-based device shows a high Voc of 1.11 V, yielding a promising efficiency of 19.57%. The MZO-based device (unencapsulated) retains 76% of its initial short-circuit current density (Jsc) after 1 year air aging (room temperature, relative humidity: 40–80%) and 8 h UV irradiation (365 nm, 35 W), versus only 12% under the same condition for TiO2-based device. The good UV light stability of MZO-based device can be attributed to the reduced electron trap-state density in MZO electron-transporting layer (ETL). Specifically, zinc interstitial and oxygen vacancy mediated defect sites of MZO ETL are effectively passivated, which tightly protects the perovskite layer from degradation under UV light. Our results show a great potential for MZO ETL application in UV-stable PSC. [Display omitted] •A wet-chemical route for low-temperature MgxZn1-xO nanocrystals is reported.•The champion PCE of MgxZn1-xO-based perovskite solar cell is 19.57%.•The Voc is 1.11 V, keeping up with that (1.11 V) of SnO2-based n-i-p device.•Device retains 76% of initial Jsc after 1 year air aging and 8 h UV irradiation.</description><subject>Aging</subject><subject>Air temperature</subject><subject>Charge transfer</subject><subject>Circuits</subject><subject>Conduction</subject><subject>Conduction bands</subject><subject>Electron mobility</subject><subject>Electron transport</subject><subject>Electron-transporting material</subject><subject>Irradiation</subject><subject>MgxZn1-xO</subject><subject>Open circuit voltage</subject><subject>Perovskite solar cell</subject><subject>Perovskites</subject><subject>Photodegradation</subject><subject>Photovoltaic cells</subject><subject>Relative humidity</subject><subject>Room temperature</subject><subject>Short circuit currents</subject><subject>Short-circuit current</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Titanium dioxide</subject><subject>Ultraviolet light stability</subject><subject>Ultraviolet radiation</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwDzhE4pziV5zkgoQQL6moHIADF8tJNq2DGxfbKe2_x1U4cxppd2ZW-yF0SfCMYCKuu5m3Zq3CjGIaRwRzkh-hCSnyMmWsLI7RBJc0TzHlxSk6877DGFPB-AR9vBrVK5e8LHefPUl3i7RSHppkA85u_ZcOkMTuaKjBmORHh1Xih7jU1iWDCU5ttTUQEqOXq5D4oCptdNifo5NWGQ8XfzpF7w_3b3dP6Xzx-Hx3O09rxnhIqyonBcOiVayqM1IVtCoJBsJ5q5QCRlgGWSGaUlBBFMvrolU5F8Aoh4ZEnaKrsXfj7PcAPsjODq6PJyXlnDBcCJxFFx9dtbPeO2jlxum1cntJsDwQlJ0cCcoDQTkSjLGbMQbxg60GJ32toa-h0Q7qIBur_y_4BfelfCI</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Han, Fei</creator><creator>Wan, Zhongquan</creator><creator>Luo, Junsheng</creator><creator>Xia, Jianxing</creator><creator>Shu, Hongyu</creator><creator>Jia, Chunyang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202005</creationdate><title>Planar MgxZn1-xO-based perovskite solar cell with superior ultraviolet light stability</title><author>Han, Fei ; Wan, Zhongquan ; Luo, Junsheng ; Xia, Jianxing ; Shu, Hongyu ; Jia, Chunyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-bb718306fa3bc51b82b910e144faaae3135e586d96261a37c8fa746e324ed16e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Air temperature</topic><topic>Charge transfer</topic><topic>Circuits</topic><topic>Conduction</topic><topic>Conduction bands</topic><topic>Electron mobility</topic><topic>Electron transport</topic><topic>Electron-transporting material</topic><topic>Irradiation</topic><topic>MgxZn1-xO</topic><topic>Open circuit voltage</topic><topic>Perovskite solar cell</topic><topic>Perovskites</topic><topic>Photodegradation</topic><topic>Photovoltaic cells</topic><topic>Relative humidity</topic><topic>Room temperature</topic><topic>Short circuit currents</topic><topic>Short-circuit current</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Titanium dioxide</topic><topic>Ultraviolet light stability</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Fei</creatorcontrib><creatorcontrib>Wan, Zhongquan</creatorcontrib><creatorcontrib>Luo, Junsheng</creatorcontrib><creatorcontrib>Xia, Jianxing</creatorcontrib><creatorcontrib>Shu, Hongyu</creatorcontrib><creatorcontrib>Jia, Chunyang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Fei</au><au>Wan, Zhongquan</au><au>Luo, Junsheng</au><au>Xia, Jianxing</au><au>Shu, Hongyu</au><au>Jia, Chunyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planar MgxZn1-xO-based perovskite solar cell with superior ultraviolet light stability</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2020-05</date><risdate>2020</risdate><volume>208</volume><spage>110417</spage><pages>110417-</pages><artnum>110417</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Generally, TiO2-based perovskite solar cell (PSC) is beneficial to high efficiency but poor ultraviolet (UV) light stability. Here, we report that a highly efficient MgxZn1-xO-based (MZO-based) PSC with excellent UV light stability. MZO has a higher electron mobility and deeper conduction band than traditional TiO2, which can reduce the charge accumulation at the MZO/perovskite interface and enhance the charge transfer from perovskite to MZO. Furthermore, the reduced interface loss and energy barrier are beneficial to obtain high open-circuit voltage (Voc). By optimizing, the MZO-based device shows a high Voc of 1.11 V, yielding a promising efficiency of 19.57%. The MZO-based device (unencapsulated) retains 76% of its initial short-circuit current density (Jsc) after 1 year air aging (room temperature, relative humidity: 40–80%) and 8 h UV irradiation (365 nm, 35 W), versus only 12% under the same condition for TiO2-based device. The good UV light stability of MZO-based device can be attributed to the reduced electron trap-state density in MZO electron-transporting layer (ETL). Specifically, zinc interstitial and oxygen vacancy mediated defect sites of MZO ETL are effectively passivated, which tightly protects the perovskite layer from degradation under UV light. Our results show a great potential for MZO ETL application in UV-stable PSC. [Display omitted] •A wet-chemical route for low-temperature MgxZn1-xO nanocrystals is reported.•The champion PCE of MgxZn1-xO-based perovskite solar cell is 19.57%.•The Voc is 1.11 V, keeping up with that (1.11 V) of SnO2-based n-i-p device.•Device retains 76% of initial Jsc after 1 year air aging and 8 h UV irradiation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2020.110417</doi></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2020-05, Vol.208, p.110417, Article 110417
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_2441308605
source Access via ScienceDirect (Elsevier)
subjects Aging
Air temperature
Charge transfer
Circuits
Conduction
Conduction bands
Electron mobility
Electron transport
Electron-transporting material
Irradiation
MgxZn1-xO
Open circuit voltage
Perovskite solar cell
Perovskites
Photodegradation
Photovoltaic cells
Relative humidity
Room temperature
Short circuit currents
Short-circuit current
Solar cells
Stability
Titanium dioxide
Ultraviolet light stability
Ultraviolet radiation
title Planar MgxZn1-xO-based perovskite solar cell with superior ultraviolet light stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planar%20MgxZn1-xO-based%20perovskite%20solar%20cell%20with%20superior%20ultraviolet%20light%20stability&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Han,%20Fei&rft.date=2020-05&rft.volume=208&rft.spage=110417&rft.pages=110417-&rft.artnum=110417&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2020.110417&rft_dat=%3Cproquest_cross%3E2441308605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441308605&rft_id=info:pmid/&rft_els_id=S0927024820300246&rfr_iscdi=true