Complex networks for benchmarking in global universities rankings

Finding a set of units that can serve as a reference for growth or improvement in positions within a ranking is not a simple task, since each ranking method can place the same unit in different positions and may even differ in relative position within the ranking. This study proposes a method that a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientometrics 2020-10, Vol.125 (1), p.405-425
Hauptverfasser: Tuesta, Esteban Fernández, Bolaños-Pizarro, Máxima, Neves, Daniel Pimentel, Fernández, Geziel, Axel-Berg, Justin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 425
container_issue 1
container_start_page 405
container_title Scientometrics
container_volume 125
creator Tuesta, Esteban Fernández
Bolaños-Pizarro, Máxima
Neves, Daniel Pimentel
Fernández, Geziel
Axel-Berg, Justin
description Finding a set of units that can serve as a reference for growth or improvement in positions within a ranking is not a simple task, since each ranking method can place the same unit in different positions and may even differ in relative position within the ranking. This study proposes a method that applies a combination of network analysis and efficiency methods to global university rankings. Complex networks allow the creation of a graph structure that selects a set of units that change positions in consecutive rankings and also the selection of the set of nodes that are linked with a selected node. For this new set, it is possible to calculate the efficiency level using Data Envelopment Analysis (DEA), from which the benchmarks of the indicators for each of the selected universities can be computed. The purpose of this paper is to develop a methodology to find a set of universities that compete with any university selected from those in the global university rankings, in particular ARWU, THE and QS. Moreover, this work also proposes to estimate the efficiency level of each university that competes with the selected university using the Data Envelopment Analysis methodology in order to establish benchmarks for each of the target Universities. This methodology is replicable for any university in any ranking or set of rankings. Given the high volatility of rankings, this process can serve university policy makers in selecting indicators to focus on for improved results in the short term.
doi_str_mv 10.1007/s11192-020-03637-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441293484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441293484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-84ca678ac21e1252e2f3ef74f143cc3f5dec6131b49e8be78fd665e08404c6463</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTZ4bMdxllXFS6rEBtZW4o5L2tQudsrj70kJEjtWs5h77mgOIZfAr4Hz8iYDQCUYF5xxqWXJqiMygcIYJoyGYzLhIA2rQPJTcpbzmg-Q5GZCZvO43XX4SQP2HzFtMvUx0QaDe93WadOGFW0DXXWxqTu6D-07ptz2LWaa6nBY53Ny4usu48XvnJKXu9vn-QNbPN0_zmcL5mRZ9swoV-vS1E4AgigECi_Rl8qDks5JXyzRaZDQqApNg6XxS60L5EZx5bTSckquxt5dim97zL1dx30Kw0krlAJRSWXUkBJjyqWYc0Jvd6kdPvmywO1BlR1V2UGV_VFlqwGSI5SHcFhh-qv-h_oGKk5sHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441293484</pqid></control><display><type>article</type><title>Complex networks for benchmarking in global universities rankings</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tuesta, Esteban Fernández ; Bolaños-Pizarro, Máxima ; Neves, Daniel Pimentel ; Fernández, Geziel ; Axel-Berg, Justin</creator><creatorcontrib>Tuesta, Esteban Fernández ; Bolaños-Pizarro, Máxima ; Neves, Daniel Pimentel ; Fernández, Geziel ; Axel-Berg, Justin</creatorcontrib><description>Finding a set of units that can serve as a reference for growth or improvement in positions within a ranking is not a simple task, since each ranking method can place the same unit in different positions and may even differ in relative position within the ranking. This study proposes a method that applies a combination of network analysis and efficiency methods to global university rankings. Complex networks allow the creation of a graph structure that selects a set of units that change positions in consecutive rankings and also the selection of the set of nodes that are linked with a selected node. For this new set, it is possible to calculate the efficiency level using Data Envelopment Analysis (DEA), from which the benchmarks of the indicators for each of the selected universities can be computed. The purpose of this paper is to develop a methodology to find a set of universities that compete with any university selected from those in the global university rankings, in particular ARWU, THE and QS. Moreover, this work also proposes to estimate the efficiency level of each university that competes with the selected university using the Data Envelopment Analysis methodology in order to establish benchmarks for each of the target Universities. This methodology is replicable for any university in any ranking or set of rankings. Given the high volatility of rankings, this process can serve university policy makers in selecting indicators to focus on for improved results in the short term.</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-020-03637-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Benchmarks ; Colleges &amp; universities ; Competition ; Computer Science ; Data analysis ; Data envelopment analysis ; Efficiency ; Indicators ; Information Storage and Retrieval ; Library Science ; Methodology ; Network analysis ; Operations research ; Ranking ; Ratings &amp; rankings ; Volatility</subject><ispartof>Scientometrics, 2020-10, Vol.125 (1), p.405-425</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2020</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-84ca678ac21e1252e2f3ef74f143cc3f5dec6131b49e8be78fd665e08404c6463</citedby><cites>FETCH-LOGICAL-c377t-84ca678ac21e1252e2f3ef74f143cc3f5dec6131b49e8be78fd665e08404c6463</cites><orcidid>0000-0003-1680-0080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11192-020-03637-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11192-020-03637-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tuesta, Esteban Fernández</creatorcontrib><creatorcontrib>Bolaños-Pizarro, Máxima</creatorcontrib><creatorcontrib>Neves, Daniel Pimentel</creatorcontrib><creatorcontrib>Fernández, Geziel</creatorcontrib><creatorcontrib>Axel-Berg, Justin</creatorcontrib><title>Complex networks for benchmarking in global universities rankings</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><description>Finding a set of units that can serve as a reference for growth or improvement in positions within a ranking is not a simple task, since each ranking method can place the same unit in different positions and may even differ in relative position within the ranking. This study proposes a method that applies a combination of network analysis and efficiency methods to global university rankings. Complex networks allow the creation of a graph structure that selects a set of units that change positions in consecutive rankings and also the selection of the set of nodes that are linked with a selected node. For this new set, it is possible to calculate the efficiency level using Data Envelopment Analysis (DEA), from which the benchmarks of the indicators for each of the selected universities can be computed. The purpose of this paper is to develop a methodology to find a set of universities that compete with any university selected from those in the global university rankings, in particular ARWU, THE and QS. Moreover, this work also proposes to estimate the efficiency level of each university that competes with the selected university using the Data Envelopment Analysis methodology in order to establish benchmarks for each of the target Universities. This methodology is replicable for any university in any ranking or set of rankings. Given the high volatility of rankings, this process can serve university policy makers in selecting indicators to focus on for improved results in the short term.</description><subject>Benchmarks</subject><subject>Colleges &amp; universities</subject><subject>Competition</subject><subject>Computer Science</subject><subject>Data analysis</subject><subject>Data envelopment analysis</subject><subject>Efficiency</subject><subject>Indicators</subject><subject>Information Storage and Retrieval</subject><subject>Library Science</subject><subject>Methodology</subject><subject>Network analysis</subject><subject>Operations research</subject><subject>Ranking</subject><subject>Ratings &amp; rankings</subject><subject>Volatility</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTZ4bMdxllXFS6rEBtZW4o5L2tQudsrj70kJEjtWs5h77mgOIZfAr4Hz8iYDQCUYF5xxqWXJqiMygcIYJoyGYzLhIA2rQPJTcpbzmg-Q5GZCZvO43XX4SQP2HzFtMvUx0QaDe93WadOGFW0DXXWxqTu6D-07ptz2LWaa6nBY53Ny4usu48XvnJKXu9vn-QNbPN0_zmcL5mRZ9swoV-vS1E4AgigECi_Rl8qDks5JXyzRaZDQqApNg6XxS60L5EZx5bTSckquxt5dim97zL1dx30Kw0krlAJRSWXUkBJjyqWYc0Jvd6kdPvmywO1BlR1V2UGV_VFlqwGSI5SHcFhh-qv-h_oGKk5sHg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Tuesta, Esteban Fernández</creator><creator>Bolaños-Pizarro, Máxima</creator><creator>Neves, Daniel Pimentel</creator><creator>Fernández, Geziel</creator><creator>Axel-Berg, Justin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><orcidid>https://orcid.org/0000-0003-1680-0080</orcidid></search><sort><creationdate>20201001</creationdate><title>Complex networks for benchmarking in global universities rankings</title><author>Tuesta, Esteban Fernández ; Bolaños-Pizarro, Máxima ; Neves, Daniel Pimentel ; Fernández, Geziel ; Axel-Berg, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-84ca678ac21e1252e2f3ef74f143cc3f5dec6131b49e8be78fd665e08404c6463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benchmarks</topic><topic>Colleges &amp; universities</topic><topic>Competition</topic><topic>Computer Science</topic><topic>Data analysis</topic><topic>Data envelopment analysis</topic><topic>Efficiency</topic><topic>Indicators</topic><topic>Information Storage and Retrieval</topic><topic>Library Science</topic><topic>Methodology</topic><topic>Network analysis</topic><topic>Operations research</topic><topic>Ranking</topic><topic>Ratings &amp; rankings</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuesta, Esteban Fernández</creatorcontrib><creatorcontrib>Bolaños-Pizarro, Máxima</creatorcontrib><creatorcontrib>Neves, Daniel Pimentel</creatorcontrib><creatorcontrib>Fernández, Geziel</creatorcontrib><creatorcontrib>Axel-Berg, Justin</creatorcontrib><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuesta, Esteban Fernández</au><au>Bolaños-Pizarro, Máxima</au><au>Neves, Daniel Pimentel</au><au>Fernández, Geziel</au><au>Axel-Berg, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex networks for benchmarking in global universities rankings</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>125</volume><issue>1</issue><spage>405</spage><epage>425</epage><pages>405-425</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><abstract>Finding a set of units that can serve as a reference for growth or improvement in positions within a ranking is not a simple task, since each ranking method can place the same unit in different positions and may even differ in relative position within the ranking. This study proposes a method that applies a combination of network analysis and efficiency methods to global university rankings. Complex networks allow the creation of a graph structure that selects a set of units that change positions in consecutive rankings and also the selection of the set of nodes that are linked with a selected node. For this new set, it is possible to calculate the efficiency level using Data Envelopment Analysis (DEA), from which the benchmarks of the indicators for each of the selected universities can be computed. The purpose of this paper is to develop a methodology to find a set of universities that compete with any university selected from those in the global university rankings, in particular ARWU, THE and QS. Moreover, this work also proposes to estimate the efficiency level of each university that competes with the selected university using the Data Envelopment Analysis methodology in order to establish benchmarks for each of the target Universities. This methodology is replicable for any university in any ranking or set of rankings. Given the high volatility of rankings, this process can serve university policy makers in selecting indicators to focus on for improved results in the short term.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11192-020-03637-9</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1680-0080</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0138-9130
ispartof Scientometrics, 2020-10, Vol.125 (1), p.405-425
issn 0138-9130
1588-2861
language eng
recordid cdi_proquest_journals_2441293484
source SpringerLink Journals - AutoHoldings
subjects Benchmarks
Colleges & universities
Competition
Computer Science
Data analysis
Data envelopment analysis
Efficiency
Indicators
Information Storage and Retrieval
Library Science
Methodology
Network analysis
Operations research
Ranking
Ratings & rankings
Volatility
title Complex networks for benchmarking in global universities rankings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20networks%20for%20benchmarking%20in%20global%20universities%20rankings&rft.jtitle=Scientometrics&rft.au=Tuesta,%20Esteban%20Fern%C3%A1ndez&rft.date=2020-10-01&rft.volume=125&rft.issue=1&rft.spage=405&rft.epage=425&rft.pages=405-425&rft.issn=0138-9130&rft.eissn=1588-2861&rft_id=info:doi/10.1007/s11192-020-03637-9&rft_dat=%3Cproquest_cross%3E2441293484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441293484&rft_id=info:pmid/&rfr_iscdi=true