An extended stochastic pseudo‐spectral Galerkin finite element method (XS‐PS‐GFEM) for elliptic equations with hybrid uncertainties

Summary Nouy and Clement introduced the stochastic extended finite element method to solve linear elasticity problem defined on random domain. The material properties and boundary conditions were assumed to be deterministic. In this work, we extend this framework to account for multiple independent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2020-10, Vol.121 (19), p.4329-4346
Hauptverfasser: Varghese Mathew, Tittu, Rebbagondla, Jayamanideep, Natarajan, Sundararajan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4346
container_issue 19
container_start_page 4329
container_title International journal for numerical methods in engineering
container_volume 121
creator Varghese Mathew, Tittu
Rebbagondla, Jayamanideep
Natarajan, Sundararajan
description Summary Nouy and Clement introduced the stochastic extended finite element method to solve linear elasticity problem defined on random domain. The material properties and boundary conditions were assumed to be deterministic. In this work, we extend this framework to account for multiple independent input uncertainties, namely, material, geometry, and external force uncertainties. The stochastic field is represented using the polynomial chaos expansion. The challenge in numerical integration over multidimensional probabilistic space is addressed using the pseudo‐spectral Galerkin method. Thereafter, a sensitivity analysis based on Sobol indices using the derived stochastic extended Finite Element Method solution is presented. The efficiency and accuracy of the proposed novel framework against conventional Monte Carlo methods is elucidated in detail for a few one and two dimensional problems.
doi_str_mv 10.1002/nme.6433
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441159120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441159120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2543-80061e97b705cbad9c01cb1db2b9b7c6b8c78d03027d2ce7f2db734a15c5a0703</originalsourceid><addsrcrecordid>eNp10MtKxDAUBuAgCo4X8BECbnRRPUnbyXQpMjMK3kAFdyWXUybaSWuSorNz685n9ElsHbduzlmcj__AT8gBgxMGwE_dEk_GWZpukBGDQiTAQWySUX8qkryYsG2yE8IzAGM5pCPyeeYovkd0Bg0NsdELGaLVtA3Ymeb74yu0qKOXNZ3LGv2LdbSyzkakWOMSXaRLjIvG0KOn-17fDWM-m14f06rxvaltO8ThayejbVygbzYu6GKlvDW0cxp9lNZFi2GPbFWyDrj_t3fJ42z6cH6RXN3OL8_PrhLN8yxNJgBjhoVQAnKtpCk0MK2YUVwVSuixmmgxMZACF4ZrFBU3SqSZZLnOJQhId8nhOrf1zWuHIZbPTedd_7LkWdbXUjA-qKO10r4JwWNVtt4upV-VDMqh6LIvuhyK7mmypm-2xtW_rry5nv76H-RPg6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441159120</pqid></control><display><type>article</type><title>An extended stochastic pseudo‐spectral Galerkin finite element method (XS‐PS‐GFEM) for elliptic equations with hybrid uncertainties</title><source>Wiley Journals</source><creator>Varghese Mathew, Tittu ; Rebbagondla, Jayamanideep ; Natarajan, Sundararajan</creator><creatorcontrib>Varghese Mathew, Tittu ; Rebbagondla, Jayamanideep ; Natarajan, Sundararajan</creatorcontrib><description>Summary Nouy and Clement introduced the stochastic extended finite element method to solve linear elasticity problem defined on random domain. The material properties and boundary conditions were assumed to be deterministic. In this work, we extend this framework to account for multiple independent input uncertainties, namely, material, geometry, and external force uncertainties. The stochastic field is represented using the polynomial chaos expansion. The challenge in numerical integration over multidimensional probabilistic space is addressed using the pseudo‐spectral Galerkin method. Thereafter, a sensitivity analysis based on Sobol indices using the derived stochastic extended Finite Element Method solution is presented. The efficiency and accuracy of the proposed novel framework against conventional Monte Carlo methods is elucidated in detail for a few one and two dimensional problems.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6433</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Boundary conditions ; Elliptic functions ; Finite element analysis ; Finite element method ; force uncertainty ; Galerkin method ; geometric uncertainty ; Material properties ; material uncertainty ; Mathematical analysis ; Monte Carlo simulation ; Numerical integration ; polynomial chaos ; Polynomials ; random level set ; Sensitivity analysis ; Sobol index ; stochastic Galerkin pseudo‐spectral method ; Uncertainty ; XFEM</subject><ispartof>International journal for numerical methods in engineering, 2020-10, Vol.121 (19), p.4329-4346</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2543-80061e97b705cbad9c01cb1db2b9b7c6b8c78d03027d2ce7f2db734a15c5a0703</cites><orcidid>0000-0002-0409-0096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6433$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6433$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Varghese Mathew, Tittu</creatorcontrib><creatorcontrib>Rebbagondla, Jayamanideep</creatorcontrib><creatorcontrib>Natarajan, Sundararajan</creatorcontrib><title>An extended stochastic pseudo‐spectral Galerkin finite element method (XS‐PS‐GFEM) for elliptic equations with hybrid uncertainties</title><title>International journal for numerical methods in engineering</title><description>Summary Nouy and Clement introduced the stochastic extended finite element method to solve linear elasticity problem defined on random domain. The material properties and boundary conditions were assumed to be deterministic. In this work, we extend this framework to account for multiple independent input uncertainties, namely, material, geometry, and external force uncertainties. The stochastic field is represented using the polynomial chaos expansion. The challenge in numerical integration over multidimensional probabilistic space is addressed using the pseudo‐spectral Galerkin method. Thereafter, a sensitivity analysis based on Sobol indices using the derived stochastic extended Finite Element Method solution is presented. The efficiency and accuracy of the proposed novel framework against conventional Monte Carlo methods is elucidated in detail for a few one and two dimensional problems.</description><subject>Boundary conditions</subject><subject>Elliptic functions</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>force uncertainty</subject><subject>Galerkin method</subject><subject>geometric uncertainty</subject><subject>Material properties</subject><subject>material uncertainty</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>Numerical integration</subject><subject>polynomial chaos</subject><subject>Polynomials</subject><subject>random level set</subject><subject>Sensitivity analysis</subject><subject>Sobol index</subject><subject>stochastic Galerkin pseudo‐spectral method</subject><subject>Uncertainty</subject><subject>XFEM</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10MtKxDAUBuAgCo4X8BECbnRRPUnbyXQpMjMK3kAFdyWXUybaSWuSorNz685n9ElsHbduzlmcj__AT8gBgxMGwE_dEk_GWZpukBGDQiTAQWySUX8qkryYsG2yE8IzAGM5pCPyeeYovkd0Bg0NsdELGaLVtA3Ymeb74yu0qKOXNZ3LGv2LdbSyzkakWOMSXaRLjIvG0KOn-17fDWM-m14f06rxvaltO8ThayejbVygbzYu6GKlvDW0cxp9lNZFi2GPbFWyDrj_t3fJ42z6cH6RXN3OL8_PrhLN8yxNJgBjhoVQAnKtpCk0MK2YUVwVSuixmmgxMZACF4ZrFBU3SqSZZLnOJQhId8nhOrf1zWuHIZbPTedd_7LkWdbXUjA-qKO10r4JwWNVtt4upV-VDMqh6LIvuhyK7mmypm-2xtW_rry5nv76H-RPg6Y</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Varghese Mathew, Tittu</creator><creator>Rebbagondla, Jayamanideep</creator><creator>Natarajan, Sundararajan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0409-0096</orcidid></search><sort><creationdate>20201015</creationdate><title>An extended stochastic pseudo‐spectral Galerkin finite element method (XS‐PS‐GFEM) for elliptic equations with hybrid uncertainties</title><author>Varghese Mathew, Tittu ; Rebbagondla, Jayamanideep ; Natarajan, Sundararajan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2543-80061e97b705cbad9c01cb1db2b9b7c6b8c78d03027d2ce7f2db734a15c5a0703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary conditions</topic><topic>Elliptic functions</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>force uncertainty</topic><topic>Galerkin method</topic><topic>geometric uncertainty</topic><topic>Material properties</topic><topic>material uncertainty</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>Numerical integration</topic><topic>polynomial chaos</topic><topic>Polynomials</topic><topic>random level set</topic><topic>Sensitivity analysis</topic><topic>Sobol index</topic><topic>stochastic Galerkin pseudo‐spectral method</topic><topic>Uncertainty</topic><topic>XFEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varghese Mathew, Tittu</creatorcontrib><creatorcontrib>Rebbagondla, Jayamanideep</creatorcontrib><creatorcontrib>Natarajan, Sundararajan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varghese Mathew, Tittu</au><au>Rebbagondla, Jayamanideep</au><au>Natarajan, Sundararajan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extended stochastic pseudo‐spectral Galerkin finite element method (XS‐PS‐GFEM) for elliptic equations with hybrid uncertainties</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>121</volume><issue>19</issue><spage>4329</spage><epage>4346</epage><pages>4329-4346</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary Nouy and Clement introduced the stochastic extended finite element method to solve linear elasticity problem defined on random domain. The material properties and boundary conditions were assumed to be deterministic. In this work, we extend this framework to account for multiple independent input uncertainties, namely, material, geometry, and external force uncertainties. The stochastic field is represented using the polynomial chaos expansion. The challenge in numerical integration over multidimensional probabilistic space is addressed using the pseudo‐spectral Galerkin method. Thereafter, a sensitivity analysis based on Sobol indices using the derived stochastic extended Finite Element Method solution is presented. The efficiency and accuracy of the proposed novel framework against conventional Monte Carlo methods is elucidated in detail for a few one and two dimensional problems.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.6433</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0409-0096</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2020-10, Vol.121 (19), p.4329-4346
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2441159120
source Wiley Journals
subjects Boundary conditions
Elliptic functions
Finite element analysis
Finite element method
force uncertainty
Galerkin method
geometric uncertainty
Material properties
material uncertainty
Mathematical analysis
Monte Carlo simulation
Numerical integration
polynomial chaos
Polynomials
random level set
Sensitivity analysis
Sobol index
stochastic Galerkin pseudo‐spectral method
Uncertainty
XFEM
title An extended stochastic pseudo‐spectral Galerkin finite element method (XS‐PS‐GFEM) for elliptic equations with hybrid uncertainties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extended%20stochastic%20pseudo%E2%80%90spectral%20Galerkin%20finite%20element%20method%20(XS%E2%80%90PS%E2%80%90GFEM)%20for%20elliptic%20equations%20with%20hybrid%20uncertainties&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Varghese%20Mathew,%20Tittu&rft.date=2020-10-15&rft.volume=121&rft.issue=19&rft.spage=4329&rft.epage=4346&rft.pages=4329-4346&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6433&rft_dat=%3Cproquest_cross%3E2441159120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441159120&rft_id=info:pmid/&rfr_iscdi=true