Low-temperature growth of Three dimensional ReS2/ReO2 metal-semiconductor heterojunctions on Graphene/polyimide film for enhanced hydrogen evolution reaction

Low temperature growth of vertical ReO2 arrays on flexible graphene-polyimide (G-PI) conductive film by the vortex flow chemical vapor deposition (VFCVD) at 450 °C, and the simulation suggest that vapor pressure of ReO2 is almost 100 times higher than that of free space at identical conditions. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2020-08, Vol.271, p.118924, Article 118924
Hauptverfasser: Feng, Qingliang, Li, Meng, Wang, Tingxia, Chen, Yaping, Wang, Xiaojian, Zhang, Xiaodong, Li, Xiaobo, Yang, Zhouchunyu, Feng, Liping, Zheng, Jianbang, Xu, Hua, Zhai, Tianyou, Jiang, Yimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118924
container_title Applied catalysis. B, Environmental
container_volume 271
creator Feng, Qingliang
Li, Meng
Wang, Tingxia
Chen, Yaping
Wang, Xiaojian
Zhang, Xiaodong
Li, Xiaobo
Yang, Zhouchunyu
Feng, Liping
Zheng, Jianbang
Xu, Hua
Zhai, Tianyou
Jiang, Yimin
description Low temperature growth of vertical ReO2 arrays on flexible graphene-polyimide (G-PI) conductive film by the vortex flow chemical vapor deposition (VFCVD) at 450 °C, and the simulation suggest that vapor pressure of ReO2 is almost 100 times higher than that of free space at identical conditions. The optimized brush-like ReS2/ReO2 metal-semiconductor heterojunction nanostructure possess outstanding HER activity with high long-term stability. [Display omitted] •Vortex flow CVD (VFCVD) is developed to synthesize high melt point ReO2 nanostructure at low temperature.•Vapor pressure of ReO2 is enhanced 100 times in confined space by Euler equation simulation.•ReS2/ReO2 heterojunctions are shown expectedly enhanced HER performance and long-term stability.•Conductive Graphene/polyimide film would be the alternative flexible substrate around 450 °C.•VFCVD is an universal approach to low-temperature growth of inorganic nanomaterials for flexible energy devices. Flexible inorganic electronics (FIE) have shown unique advantages in energy conversion, aerospace and wearable devices due to excellent electronic properties and thermostability of inorganic materials. The industrialization of high-performance flexible inorganic electronics (FIE) devices requires universal approaches to fabricate inorganic crystal on polymer substrates at acceptable temperature. Herein, we firstly developed the vortex flow chemical vapor deposition (VFCVD) for low temperature synthesis of high-quality vertical ReO2 arrays at 450 °C on flexible graphene-polyimide (G-PI) conductive film. The Euler equations suggest that the vapor pressure of ReO2 is almost 100-times higher than that of free space with VFCVD at identical conditions. The derived ReS2/ReO2 metal-semiconductor heterojunction arrays are performed outstanding hydrogen evolution reaction (HER) activity with high long-term stability as an energy conversion device. This work opens up an opportunity for low temperature growth of inorganic nanomaterials on polymer substrates by VFCVD for the industrialization of high-performance flexible energy devices.
doi_str_mv 10.1016/j.apcatb.2020.118924
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440941845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320303398</els_id><sourcerecordid>2440941845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-6c78ba89413901c9e0b367d91821942109c871b6827c6c738122404817f390e3</originalsourceid><addsrcrecordid>eNp9kV2L1DAUhoMoOK7-Ay8CXncmX7bpjSCLrsLAwjr3IZOeblPapJ6ku8yP8b9uxnrt1YHD87zw8hLykbM9Z7w-jHu7OJvPe8FEeXHdCvWK7LhuZCW1lq_JjrWirqRs5FvyLqWRMSak0Dvy5xifqwzzAmjzikAfMT7ngcaengYEoJ2fISQfg53oA_wShwe4F3SGbKcqwexdDN3qckQ6QAaM4xpcLniiMdA7tMsAAQ5LnC5-9h3Q3k8z7QsOYbDBQUeHS4fxEQKFpzitV5ci2L8h78mb3k4JPvy7N-T0_dvp9kd1vL_7efv1WDnFWK5q1-iz1a3ismXctcDOsm66lmvBWyU4a51u-LnWonGFlZoLoZjSvOmLAPKGfNpiF4y_V0jZjHHF0jgZoRQruVp9LpTaKIcxJYTeLOhnixfDmbnuYEaz7WCuO5hth6J92TQoBZ48oEnOw7W5R3DZdNH_P-AFPFGUsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440941845</pqid></control><display><type>article</type><title>Low-temperature growth of Three dimensional ReS2/ReO2 metal-semiconductor heterojunctions on Graphene/polyimide film for enhanced hydrogen evolution reaction</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Feng, Qingliang ; Li, Meng ; Wang, Tingxia ; Chen, Yaping ; Wang, Xiaojian ; Zhang, Xiaodong ; Li, Xiaobo ; Yang, Zhouchunyu ; Feng, Liping ; Zheng, Jianbang ; Xu, Hua ; Zhai, Tianyou ; Jiang, Yimin</creator><creatorcontrib>Feng, Qingliang ; Li, Meng ; Wang, Tingxia ; Chen, Yaping ; Wang, Xiaojian ; Zhang, Xiaodong ; Li, Xiaobo ; Yang, Zhouchunyu ; Feng, Liping ; Zheng, Jianbang ; Xu, Hua ; Zhai, Tianyou ; Jiang, Yimin</creatorcontrib><description>Low temperature growth of vertical ReO2 arrays on flexible graphene-polyimide (G-PI) conductive film by the vortex flow chemical vapor deposition (VFCVD) at 450 °C, and the simulation suggest that vapor pressure of ReO2 is almost 100 times higher than that of free space at identical conditions. The optimized brush-like ReS2/ReO2 metal-semiconductor heterojunction nanostructure possess outstanding HER activity with high long-term stability. [Display omitted] •Vortex flow CVD (VFCVD) is developed to synthesize high melt point ReO2 nanostructure at low temperature.•Vapor pressure of ReO2 is enhanced 100 times in confined space by Euler equation simulation.•ReS2/ReO2 heterojunctions are shown expectedly enhanced HER performance and long-term stability.•Conductive Graphene/polyimide film would be the alternative flexible substrate around 450 °C.•VFCVD is an universal approach to low-temperature growth of inorganic nanomaterials for flexible energy devices. Flexible inorganic electronics (FIE) have shown unique advantages in energy conversion, aerospace and wearable devices due to excellent electronic properties and thermostability of inorganic materials. The industrialization of high-performance flexible inorganic electronics (FIE) devices requires universal approaches to fabricate inorganic crystal on polymer substrates at acceptable temperature. Herein, we firstly developed the vortex flow chemical vapor deposition (VFCVD) for low temperature synthesis of high-quality vertical ReO2 arrays at 450 °C on flexible graphene-polyimide (G-PI) conductive film. The Euler equations suggest that the vapor pressure of ReO2 is almost 100-times higher than that of free space with VFCVD at identical conditions. The derived ReS2/ReO2 metal-semiconductor heterojunction arrays are performed outstanding hydrogen evolution reaction (HER) activity with high long-term stability as an energy conversion device. This work opens up an opportunity for low temperature growth of inorganic nanomaterials on polymer substrates by VFCVD for the industrialization of high-performance flexible energy devices.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.118924</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aerodynamics ; Arrays ; Avionics ; Chemical vapor deposition ; Electronic devices ; Energy ; Energy conversion ; Euler-Lagrange equation ; Graphene ; Graphene/polyimide film ; Heterojunctions ; Hydrogen evolution reaction ; Hydrogen evolution reactions ; Industrial development ; Industrialization ; Inorganic materials ; Low temperature ; Low-temperature growth ; Metal-semiconductor heterojunction ; Nanomaterials ; Nanotechnology ; Polyimide resins ; Polymers ; Substrates ; Thermal stability ; Vapor pressure ; Vapors ; Wearable technology</subject><ispartof>Applied catalysis. B, Environmental, 2020-08, Vol.271, p.118924, Article 118924</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-6c78ba89413901c9e0b367d91821942109c871b6827c6c738122404817f390e3</citedby><cites>FETCH-LOGICAL-c400t-6c78ba89413901c9e0b367d91821942109c871b6827c6c738122404817f390e3</cites><orcidid>0000-0003-0985-4806 ; 0000-0002-3035-3347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcatb.2020.118924$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Feng, Qingliang</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wang, Tingxia</creatorcontrib><creatorcontrib>Chen, Yaping</creatorcontrib><creatorcontrib>Wang, Xiaojian</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><creatorcontrib>Li, Xiaobo</creatorcontrib><creatorcontrib>Yang, Zhouchunyu</creatorcontrib><creatorcontrib>Feng, Liping</creatorcontrib><creatorcontrib>Zheng, Jianbang</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Zhai, Tianyou</creatorcontrib><creatorcontrib>Jiang, Yimin</creatorcontrib><title>Low-temperature growth of Three dimensional ReS2/ReO2 metal-semiconductor heterojunctions on Graphene/polyimide film for enhanced hydrogen evolution reaction</title><title>Applied catalysis. B, Environmental</title><description>Low temperature growth of vertical ReO2 arrays on flexible graphene-polyimide (G-PI) conductive film by the vortex flow chemical vapor deposition (VFCVD) at 450 °C, and the simulation suggest that vapor pressure of ReO2 is almost 100 times higher than that of free space at identical conditions. The optimized brush-like ReS2/ReO2 metal-semiconductor heterojunction nanostructure possess outstanding HER activity with high long-term stability. [Display omitted] •Vortex flow CVD (VFCVD) is developed to synthesize high melt point ReO2 nanostructure at low temperature.•Vapor pressure of ReO2 is enhanced 100 times in confined space by Euler equation simulation.•ReS2/ReO2 heterojunctions are shown expectedly enhanced HER performance and long-term stability.•Conductive Graphene/polyimide film would be the alternative flexible substrate around 450 °C.•VFCVD is an universal approach to low-temperature growth of inorganic nanomaterials for flexible energy devices. Flexible inorganic electronics (FIE) have shown unique advantages in energy conversion, aerospace and wearable devices due to excellent electronic properties and thermostability of inorganic materials. The industrialization of high-performance flexible inorganic electronics (FIE) devices requires universal approaches to fabricate inorganic crystal on polymer substrates at acceptable temperature. Herein, we firstly developed the vortex flow chemical vapor deposition (VFCVD) for low temperature synthesis of high-quality vertical ReO2 arrays at 450 °C on flexible graphene-polyimide (G-PI) conductive film. The Euler equations suggest that the vapor pressure of ReO2 is almost 100-times higher than that of free space with VFCVD at identical conditions. The derived ReS2/ReO2 metal-semiconductor heterojunction arrays are performed outstanding hydrogen evolution reaction (HER) activity with high long-term stability as an energy conversion device. This work opens up an opportunity for low temperature growth of inorganic nanomaterials on polymer substrates by VFCVD for the industrialization of high-performance flexible energy devices.</description><subject>Aerodynamics</subject><subject>Arrays</subject><subject>Avionics</subject><subject>Chemical vapor deposition</subject><subject>Electronic devices</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Euler-Lagrange equation</subject><subject>Graphene</subject><subject>Graphene/polyimide film</subject><subject>Heterojunctions</subject><subject>Hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Industrial development</subject><subject>Industrialization</subject><subject>Inorganic materials</subject><subject>Low temperature</subject><subject>Low-temperature growth</subject><subject>Metal-semiconductor heterojunction</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Polyimide resins</subject><subject>Polymers</subject><subject>Substrates</subject><subject>Thermal stability</subject><subject>Vapor pressure</subject><subject>Vapors</subject><subject>Wearable technology</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kV2L1DAUhoMoOK7-Ay8CXncmX7bpjSCLrsLAwjr3IZOeblPapJ6ku8yP8b9uxnrt1YHD87zw8hLykbM9Z7w-jHu7OJvPe8FEeXHdCvWK7LhuZCW1lq_JjrWirqRs5FvyLqWRMSak0Dvy5xifqwzzAmjzikAfMT7ngcaengYEoJ2fISQfg53oA_wShwe4F3SGbKcqwexdDN3qckQ6QAaM4xpcLniiMdA7tMsAAQ5LnC5-9h3Q3k8z7QsOYbDBQUeHS4fxEQKFpzitV5ci2L8h78mb3k4JPvy7N-T0_dvp9kd1vL_7efv1WDnFWK5q1-iz1a3ismXctcDOsm66lmvBWyU4a51u-LnWonGFlZoLoZjSvOmLAPKGfNpiF4y_V0jZjHHF0jgZoRQruVp9LpTaKIcxJYTeLOhnixfDmbnuYEaz7WCuO5hth6J92TQoBZ48oEnOw7W5R3DZdNH_P-AFPFGUsg</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>Feng, Qingliang</creator><creator>Li, Meng</creator><creator>Wang, Tingxia</creator><creator>Chen, Yaping</creator><creator>Wang, Xiaojian</creator><creator>Zhang, Xiaodong</creator><creator>Li, Xiaobo</creator><creator>Yang, Zhouchunyu</creator><creator>Feng, Liping</creator><creator>Zheng, Jianbang</creator><creator>Xu, Hua</creator><creator>Zhai, Tianyou</creator><creator>Jiang, Yimin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0985-4806</orcidid><orcidid>https://orcid.org/0000-0002-3035-3347</orcidid></search><sort><creationdate>20200815</creationdate><title>Low-temperature growth of Three dimensional ReS2/ReO2 metal-semiconductor heterojunctions on Graphene/polyimide film for enhanced hydrogen evolution reaction</title><author>Feng, Qingliang ; Li, Meng ; Wang, Tingxia ; Chen, Yaping ; Wang, Xiaojian ; Zhang, Xiaodong ; Li, Xiaobo ; Yang, Zhouchunyu ; Feng, Liping ; Zheng, Jianbang ; Xu, Hua ; Zhai, Tianyou ; Jiang, Yimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-6c78ba89413901c9e0b367d91821942109c871b6827c6c738122404817f390e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Arrays</topic><topic>Avionics</topic><topic>Chemical vapor deposition</topic><topic>Electronic devices</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Euler-Lagrange equation</topic><topic>Graphene</topic><topic>Graphene/polyimide film</topic><topic>Heterojunctions</topic><topic>Hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Industrial development</topic><topic>Industrialization</topic><topic>Inorganic materials</topic><topic>Low temperature</topic><topic>Low-temperature growth</topic><topic>Metal-semiconductor heterojunction</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Polyimide resins</topic><topic>Polymers</topic><topic>Substrates</topic><topic>Thermal stability</topic><topic>Vapor pressure</topic><topic>Vapors</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Qingliang</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wang, Tingxia</creatorcontrib><creatorcontrib>Chen, Yaping</creatorcontrib><creatorcontrib>Wang, Xiaojian</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><creatorcontrib>Li, Xiaobo</creatorcontrib><creatorcontrib>Yang, Zhouchunyu</creatorcontrib><creatorcontrib>Feng, Liping</creatorcontrib><creatorcontrib>Zheng, Jianbang</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Zhai, Tianyou</creatorcontrib><creatorcontrib>Jiang, Yimin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Qingliang</au><au>Li, Meng</au><au>Wang, Tingxia</au><au>Chen, Yaping</au><au>Wang, Xiaojian</au><au>Zhang, Xiaodong</au><au>Li, Xiaobo</au><au>Yang, Zhouchunyu</au><au>Feng, Liping</au><au>Zheng, Jianbang</au><au>Xu, Hua</au><au>Zhai, Tianyou</au><au>Jiang, Yimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-temperature growth of Three dimensional ReS2/ReO2 metal-semiconductor heterojunctions on Graphene/polyimide film for enhanced hydrogen evolution reaction</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-08-15</date><risdate>2020</risdate><volume>271</volume><spage>118924</spage><pages>118924-</pages><artnum>118924</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>Low temperature growth of vertical ReO2 arrays on flexible graphene-polyimide (G-PI) conductive film by the vortex flow chemical vapor deposition (VFCVD) at 450 °C, and the simulation suggest that vapor pressure of ReO2 is almost 100 times higher than that of free space at identical conditions. The optimized brush-like ReS2/ReO2 metal-semiconductor heterojunction nanostructure possess outstanding HER activity with high long-term stability. [Display omitted] •Vortex flow CVD (VFCVD) is developed to synthesize high melt point ReO2 nanostructure at low temperature.•Vapor pressure of ReO2 is enhanced 100 times in confined space by Euler equation simulation.•ReS2/ReO2 heterojunctions are shown expectedly enhanced HER performance and long-term stability.•Conductive Graphene/polyimide film would be the alternative flexible substrate around 450 °C.•VFCVD is an universal approach to low-temperature growth of inorganic nanomaterials for flexible energy devices. Flexible inorganic electronics (FIE) have shown unique advantages in energy conversion, aerospace and wearable devices due to excellent electronic properties and thermostability of inorganic materials. The industrialization of high-performance flexible inorganic electronics (FIE) devices requires universal approaches to fabricate inorganic crystal on polymer substrates at acceptable temperature. Herein, we firstly developed the vortex flow chemical vapor deposition (VFCVD) for low temperature synthesis of high-quality vertical ReO2 arrays at 450 °C on flexible graphene-polyimide (G-PI) conductive film. The Euler equations suggest that the vapor pressure of ReO2 is almost 100-times higher than that of free space with VFCVD at identical conditions. The derived ReS2/ReO2 metal-semiconductor heterojunction arrays are performed outstanding hydrogen evolution reaction (HER) activity with high long-term stability as an energy conversion device. This work opens up an opportunity for low temperature growth of inorganic nanomaterials on polymer substrates by VFCVD for the industrialization of high-performance flexible energy devices.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.118924</doi><orcidid>https://orcid.org/0000-0003-0985-4806</orcidid><orcidid>https://orcid.org/0000-0002-3035-3347</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2020-08, Vol.271, p.118924, Article 118924
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2440941845
source ScienceDirect Journals (5 years ago - present)
subjects Aerodynamics
Arrays
Avionics
Chemical vapor deposition
Electronic devices
Energy
Energy conversion
Euler-Lagrange equation
Graphene
Graphene/polyimide film
Heterojunctions
Hydrogen evolution reaction
Hydrogen evolution reactions
Industrial development
Industrialization
Inorganic materials
Low temperature
Low-temperature growth
Metal-semiconductor heterojunction
Nanomaterials
Nanotechnology
Polyimide resins
Polymers
Substrates
Thermal stability
Vapor pressure
Vapors
Wearable technology
title Low-temperature growth of Three dimensional ReS2/ReO2 metal-semiconductor heterojunctions on Graphene/polyimide film for enhanced hydrogen evolution reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-temperature%20growth%20of%20Three%20dimensional%20ReS2/ReO2%20metal-semiconductor%20heterojunctions%20on%20Graphene/polyimide%20film%20for%20enhanced%20hydrogen%20evolution%20reaction&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Feng,%20Qingliang&rft.date=2020-08-15&rft.volume=271&rft.spage=118924&rft.pages=118924-&rft.artnum=118924&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.118924&rft_dat=%3Cproquest_cross%3E2440941845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440941845&rft_id=info:pmid/&rft_els_id=S0926337320303398&rfr_iscdi=true