A novel SOSMC based SVPWM control of Z-source inverter for AC microgrid applications

In this paper, analysis and control of Single stage Z-Source Inverter (ZSI) using Particle Swarm Optimization (PSO) tuned Proportional Integral (PI) based Space Vector Pulse Width Modulation (SVPWM) and Second Order Sliding Mode Control (SOSMC) based SVPWM for harmonic reduction and load voltage reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microprocessors and microsystems 2020-06, Vol.75, p.103045, Article 103045
Hauptverfasser: Sangari, A., Umamaheswari, R., G Umamaheswari, M., Sree B, Lekshmi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103045
container_title Microprocessors and microsystems
container_volume 75
creator Sangari, A.
Umamaheswari, R.
G Umamaheswari, M.
Sree B, Lekshmi
description In this paper, analysis and control of Single stage Z-Source Inverter (ZSI) using Particle Swarm Optimization (PSO) tuned Proportional Integral (PI) based Space Vector Pulse Width Modulation (SVPWM) and Second Order Sliding Mode Control (SOSMC) based SVPWM for harmonic reduction and load voltage regulation are presented. To increase the reliability and to enhance the output voltage of ZSI, the Shoot-Through (ST) state is implemented. To decrease the number of sensors and to simplify the controller design, sixth order model of ZSI is transformed into second order model using Pade's approximation method. To analyse the steady state and transient response of the proposed system, the closed loop implementation is carried out using proposed control techniques. PSO tuned PI controller is utilized for outer voltage control to obtain the Shoot Through Duty Ratio (STDR). Inner current loop utilizes PSO tuned PI controller based SVPWM/SOSMC based SVPWM techniques. MATLAB/SIMULINK software tool is used to simulate the proposed system. From the simulation results, it is inferred that the SOSMC based SVPWM technique offers fast transient response, low % Total Harmonic Distortion (THD) and regulated output voltage when compared to PSO tuned PI based SVPWM control scheme. Hence, an experimental prototype model of 2 kW controlled by the SOSMC based SVPWM using Field Programmable Gate Array (FPGA) is constructed to validate the simulation results with the experimental results.
doi_str_mv 10.1016/j.micpro.2020.103045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440940751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141933120300144</els_id><sourcerecordid>2440940751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-624110e9ba361f9cf6109127e13486db9b3cc48b4738181d44a3ebe32489d85e3</originalsourceid><addsrcrecordid>eNp9UFtLwzAUDqLgnP4DHwI-d-Y06SUvwijeYGPCpoIvoU1PJaU2NekG_nsz6rNPBw7fnZBrYAtgkN62iy-jB2cXMYuPL85EckJmkGdxJAVPT8mMgYBIcg7n5ML7ljGWsDSekd2S9vaAHd1utuuCVqXHmm7fXt7XVNt-dLajtqEfkbd7p5Ga_oBuREcb6-iyoMHX2U9naloOQ2d0ORrb-0ty1pSdx6u_OyevD_e74ilabR6fi-Uq0pyLMUpjAcBQViVPoZG6SYFJiDMELvK0rmTFtRZ5JTKeQw61ECXHCnksclnnCfI5uZl0Q_fvPfpRtSFmHyxVLASTgmUJBJSYUCGq9w4bNTjzVbofBUwd91OtmvZTx_3UtF-g3U00DA0OBp3y2mCvsTYO9ahqa_4X-AW2BHiV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440940751</pqid></control><display><type>article</type><title>A novel SOSMC based SVPWM control of Z-source inverter for AC microgrid applications</title><source>Elsevier ScienceDirect Journals</source><creator>Sangari, A. ; Umamaheswari, R. ; G Umamaheswari, M. ; Sree B, Lekshmi</creator><creatorcontrib>Sangari, A. ; Umamaheswari, R. ; G Umamaheswari, M. ; Sree B, Lekshmi</creatorcontrib><description>In this paper, analysis and control of Single stage Z-Source Inverter (ZSI) using Particle Swarm Optimization (PSO) tuned Proportional Integral (PI) based Space Vector Pulse Width Modulation (SVPWM) and Second Order Sliding Mode Control (SOSMC) based SVPWM for harmonic reduction and load voltage regulation are presented. To increase the reliability and to enhance the output voltage of ZSI, the Shoot-Through (ST) state is implemented. To decrease the number of sensors and to simplify the controller design, sixth order model of ZSI is transformed into second order model using Pade's approximation method. To analyse the steady state and transient response of the proposed system, the closed loop implementation is carried out using proposed control techniques. PSO tuned PI controller is utilized for outer voltage control to obtain the Shoot Through Duty Ratio (STDR). Inner current loop utilizes PSO tuned PI controller based SVPWM/SOSMC based SVPWM techniques. MATLAB/SIMULINK software tool is used to simulate the proposed system. From the simulation results, it is inferred that the SOSMC based SVPWM technique offers fast transient response, low % Total Harmonic Distortion (THD) and regulated output voltage when compared to PSO tuned PI based SVPWM control scheme. Hence, an experimental prototype model of 2 kW controlled by the SOSMC based SVPWM using Field Programmable Gate Array (FPGA) is constructed to validate the simulation results with the experimental results.</description><identifier>ISSN: 0141-9331</identifier><identifier>EISSN: 1872-9436</identifier><identifier>DOI: 10.1016/j.micpro.2020.103045</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Approximation ; Closed loops ; Computer simulation ; Control systems design ; Controllers ; Distributed generation ; Electric potential ; Field programmable gate arrays ; Harmonic distortion ; Harmonic reduction ; Inverters ; Particle swarm optimization ; Particle swarm organization (PSO) ; Proportional integral ; Proportional integral (PI) ; Pulse duration modulation ; Second order sliding mode control (SOSMC) ; Shoot-through (ST) ; Sliding mode control ; Software ; Software development tools ; Space vector pulse width modulation (SVPWM) ; Transient response ; Voltage ; Z-source inverter (ZSI)</subject><ispartof>Microprocessors and microsystems, 2020-06, Vol.75, p.103045, Article 103045</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-624110e9ba361f9cf6109127e13486db9b3cc48b4738181d44a3ebe32489d85e3</citedby><cites>FETCH-LOGICAL-c334t-624110e9ba361f9cf6109127e13486db9b3cc48b4738181d44a3ebe32489d85e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.micpro.2020.103045$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27904,27905,45975</link.rule.ids></links><search><creatorcontrib>Sangari, A.</creatorcontrib><creatorcontrib>Umamaheswari, R.</creatorcontrib><creatorcontrib>G Umamaheswari, M.</creatorcontrib><creatorcontrib>Sree B, Lekshmi</creatorcontrib><title>A novel SOSMC based SVPWM control of Z-source inverter for AC microgrid applications</title><title>Microprocessors and microsystems</title><description>In this paper, analysis and control of Single stage Z-Source Inverter (ZSI) using Particle Swarm Optimization (PSO) tuned Proportional Integral (PI) based Space Vector Pulse Width Modulation (SVPWM) and Second Order Sliding Mode Control (SOSMC) based SVPWM for harmonic reduction and load voltage regulation are presented. To increase the reliability and to enhance the output voltage of ZSI, the Shoot-Through (ST) state is implemented. To decrease the number of sensors and to simplify the controller design, sixth order model of ZSI is transformed into second order model using Pade's approximation method. To analyse the steady state and transient response of the proposed system, the closed loop implementation is carried out using proposed control techniques. PSO tuned PI controller is utilized for outer voltage control to obtain the Shoot Through Duty Ratio (STDR). Inner current loop utilizes PSO tuned PI controller based SVPWM/SOSMC based SVPWM techniques. MATLAB/SIMULINK software tool is used to simulate the proposed system. From the simulation results, it is inferred that the SOSMC based SVPWM technique offers fast transient response, low % Total Harmonic Distortion (THD) and regulated output voltage when compared to PSO tuned PI based SVPWM control scheme. Hence, an experimental prototype model of 2 kW controlled by the SOSMC based SVPWM using Field Programmable Gate Array (FPGA) is constructed to validate the simulation results with the experimental results.</description><subject>Approximation</subject><subject>Closed loops</subject><subject>Computer simulation</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Distributed generation</subject><subject>Electric potential</subject><subject>Field programmable gate arrays</subject><subject>Harmonic distortion</subject><subject>Harmonic reduction</subject><subject>Inverters</subject><subject>Particle swarm optimization</subject><subject>Particle swarm organization (PSO)</subject><subject>Proportional integral</subject><subject>Proportional integral (PI)</subject><subject>Pulse duration modulation</subject><subject>Second order sliding mode control (SOSMC)</subject><subject>Shoot-through (ST)</subject><subject>Sliding mode control</subject><subject>Software</subject><subject>Software development tools</subject><subject>Space vector pulse width modulation (SVPWM)</subject><subject>Transient response</subject><subject>Voltage</subject><subject>Z-source inverter (ZSI)</subject><issn>0141-9331</issn><issn>1872-9436</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UFtLwzAUDqLgnP4DHwI-d-Y06SUvwijeYGPCpoIvoU1PJaU2NekG_nsz6rNPBw7fnZBrYAtgkN62iy-jB2cXMYuPL85EckJmkGdxJAVPT8mMgYBIcg7n5ML7ljGWsDSekd2S9vaAHd1utuuCVqXHmm7fXt7XVNt-dLajtqEfkbd7p5Ga_oBuREcb6-iyoMHX2U9naloOQ2d0ORrb-0ty1pSdx6u_OyevD_e74ilabR6fi-Uq0pyLMUpjAcBQViVPoZG6SYFJiDMELvK0rmTFtRZ5JTKeQw61ECXHCnksclnnCfI5uZl0Q_fvPfpRtSFmHyxVLASTgmUJBJSYUCGq9w4bNTjzVbofBUwd91OtmvZTx_3UtF-g3U00DA0OBp3y2mCvsTYO9ahqa_4X-AW2BHiV</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Sangari, A.</creator><creator>Umamaheswari, R.</creator><creator>G Umamaheswari, M.</creator><creator>Sree B, Lekshmi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202006</creationdate><title>A novel SOSMC based SVPWM control of Z-source inverter for AC microgrid applications</title><author>Sangari, A. ; Umamaheswari, R. ; G Umamaheswari, M. ; Sree B, Lekshmi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-624110e9ba361f9cf6109127e13486db9b3cc48b4738181d44a3ebe32489d85e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Closed loops</topic><topic>Computer simulation</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Distributed generation</topic><topic>Electric potential</topic><topic>Field programmable gate arrays</topic><topic>Harmonic distortion</topic><topic>Harmonic reduction</topic><topic>Inverters</topic><topic>Particle swarm optimization</topic><topic>Particle swarm organization (PSO)</topic><topic>Proportional integral</topic><topic>Proportional integral (PI)</topic><topic>Pulse duration modulation</topic><topic>Second order sliding mode control (SOSMC)</topic><topic>Shoot-through (ST)</topic><topic>Sliding mode control</topic><topic>Software</topic><topic>Software development tools</topic><topic>Space vector pulse width modulation (SVPWM)</topic><topic>Transient response</topic><topic>Voltage</topic><topic>Z-source inverter (ZSI)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sangari, A.</creatorcontrib><creatorcontrib>Umamaheswari, R.</creatorcontrib><creatorcontrib>G Umamaheswari, M.</creatorcontrib><creatorcontrib>Sree B, Lekshmi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Microprocessors and microsystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sangari, A.</au><au>Umamaheswari, R.</au><au>G Umamaheswari, M.</au><au>Sree B, Lekshmi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel SOSMC based SVPWM control of Z-source inverter for AC microgrid applications</atitle><jtitle>Microprocessors and microsystems</jtitle><date>2020-06</date><risdate>2020</risdate><volume>75</volume><spage>103045</spage><pages>103045-</pages><artnum>103045</artnum><issn>0141-9331</issn><eissn>1872-9436</eissn><abstract>In this paper, analysis and control of Single stage Z-Source Inverter (ZSI) using Particle Swarm Optimization (PSO) tuned Proportional Integral (PI) based Space Vector Pulse Width Modulation (SVPWM) and Second Order Sliding Mode Control (SOSMC) based SVPWM for harmonic reduction and load voltage regulation are presented. To increase the reliability and to enhance the output voltage of ZSI, the Shoot-Through (ST) state is implemented. To decrease the number of sensors and to simplify the controller design, sixth order model of ZSI is transformed into second order model using Pade's approximation method. To analyse the steady state and transient response of the proposed system, the closed loop implementation is carried out using proposed control techniques. PSO tuned PI controller is utilized for outer voltage control to obtain the Shoot Through Duty Ratio (STDR). Inner current loop utilizes PSO tuned PI controller based SVPWM/SOSMC based SVPWM techniques. MATLAB/SIMULINK software tool is used to simulate the proposed system. From the simulation results, it is inferred that the SOSMC based SVPWM technique offers fast transient response, low % Total Harmonic Distortion (THD) and regulated output voltage when compared to PSO tuned PI based SVPWM control scheme. Hence, an experimental prototype model of 2 kW controlled by the SOSMC based SVPWM using Field Programmable Gate Array (FPGA) is constructed to validate the simulation results with the experimental results.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.micpro.2020.103045</doi></addata></record>
fulltext fulltext
identifier ISSN: 0141-9331
ispartof Microprocessors and microsystems, 2020-06, Vol.75, p.103045, Article 103045
issn 0141-9331
1872-9436
language eng
recordid cdi_proquest_journals_2440940751
source Elsevier ScienceDirect Journals
subjects Approximation
Closed loops
Computer simulation
Control systems design
Controllers
Distributed generation
Electric potential
Field programmable gate arrays
Harmonic distortion
Harmonic reduction
Inverters
Particle swarm optimization
Particle swarm organization (PSO)
Proportional integral
Proportional integral (PI)
Pulse duration modulation
Second order sliding mode control (SOSMC)
Shoot-through (ST)
Sliding mode control
Software
Software development tools
Space vector pulse width modulation (SVPWM)
Transient response
Voltage
Z-source inverter (ZSI)
title A novel SOSMC based SVPWM control of Z-source inverter for AC microgrid applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A06%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20SOSMC%20based%20SVPWM%20control%20of%20Z-source%20inverter%20for%20AC%20microgrid%20applications&rft.jtitle=Microprocessors%20and%20microsystems&rft.au=Sangari,%20A.&rft.date=2020-06&rft.volume=75&rft.spage=103045&rft.pages=103045-&rft.artnum=103045&rft.issn=0141-9331&rft.eissn=1872-9436&rft_id=info:doi/10.1016/j.micpro.2020.103045&rft_dat=%3Cproquest_cross%3E2440940751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440940751&rft_id=info:pmid/&rft_els_id=S0141933120300144&rfr_iscdi=true