The obstacle problem for a fourth order semilinear parabolic equation

This paper is concerned with the obstacle problem for the L2-gradient flow for a functional which is higher order, non-convex and unbounded from below. We prove (i) the existence and uniqueness of local-in-time solutions to the obstacle problem and (ii) a gradient structure of the functional of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2020-09, Vol.198, p.111902, Article 111902
Hauptverfasser: Okabe, Shinya, Yoshizawa, Kensuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111902
container_title Nonlinear analysis
container_volume 198
creator Okabe, Shinya
Yoshizawa, Kensuke
description This paper is concerned with the obstacle problem for the L2-gradient flow for a functional which is higher order, non-convex and unbounded from below. We prove (i) the existence and uniqueness of local-in-time solutions to the obstacle problem and (ii) a gradient structure of the functional of the solutions, via minimizing movements. Moreover, we show the existence of solutions which blow up in a finite time.
doi_str_mv 10.1016/j.na.2020.111902
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440940559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X20301619</els_id><sourcerecordid>2440940559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-631c45da93ca2861c44e4c220cf638413c4f189c6e9eed22964a8d00dec600093</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwHPWycfm268SakfUPBSwVtIs7M0y3bTJruC_70p69XLDA_em_nxCLlnsGDA1GO76O2CA8-SMQ38gsxYtRRFyVl5SWYgFC9Kqb6uyU1KLQCwpVAzst7ukYZdGqzrkB5j2HV4oE2I1OY5xmFPQ6wx0oQH3_kebaRHG-0udN5RPI128KG_JVeN7RLe_e05-XxZb1dvxebj9X31vCmcqKqhUII5WdZWC2d5pbKQKB3n4BolKsmEkw2rtFOoEWvOtZK2qgFqdCoTazEnD9PdDHoaMQ2mzYx9fmm4lKAllOXZBZPLxZBSxMYcoz_Y-GMYmHNZpjW9NeeyzFRWjjxNEcz03x6jSc5j77D2Ed1g6uD_D_8CsDxv9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440940559</pqid></control><display><type>article</type><title>The obstacle problem for a fourth order semilinear parabolic equation</title><source>Elsevier ScienceDirect Journals</source><creator>Okabe, Shinya ; Yoshizawa, Kensuke</creator><creatorcontrib>Okabe, Shinya ; Yoshizawa, Kensuke</creatorcontrib><description>This paper is concerned with the obstacle problem for the L2-gradient flow for a functional which is higher order, non-convex and unbounded from below. We prove (i) the existence and uniqueness of local-in-time solutions to the obstacle problem and (ii) a gradient structure of the functional of the solutions, via minimizing movements. Moreover, we show the existence of solutions which blow up in a finite time.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2020.111902</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Barriers ; Fourth order semilinear parabolic equation ; Gradient flow ; Minimizing movements ; Obstacle problem</subject><ispartof>Nonlinear analysis, 2020-09, Vol.198, p.111902, Article 111902</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-631c45da93ca2861c44e4c220cf638413c4f189c6e9eed22964a8d00dec600093</citedby><cites>FETCH-LOGICAL-c388t-631c45da93ca2861c44e4c220cf638413c4f189c6e9eed22964a8d00dec600093</cites><orcidid>0000-0003-0103-7449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X20301619$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Okabe, Shinya</creatorcontrib><creatorcontrib>Yoshizawa, Kensuke</creatorcontrib><title>The obstacle problem for a fourth order semilinear parabolic equation</title><title>Nonlinear analysis</title><description>This paper is concerned with the obstacle problem for the L2-gradient flow for a functional which is higher order, non-convex and unbounded from below. We prove (i) the existence and uniqueness of local-in-time solutions to the obstacle problem and (ii) a gradient structure of the functional of the solutions, via minimizing movements. Moreover, we show the existence of solutions which blow up in a finite time.</description><subject>Barriers</subject><subject>Fourth order semilinear parabolic equation</subject><subject>Gradient flow</subject><subject>Minimizing movements</subject><subject>Obstacle problem</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3jwHPWycfm268SakfUPBSwVtIs7M0y3bTJruC_70p69XLDA_em_nxCLlnsGDA1GO76O2CA8-SMQ38gsxYtRRFyVl5SWYgFC9Kqb6uyU1KLQCwpVAzst7ukYZdGqzrkB5j2HV4oE2I1OY5xmFPQ6wx0oQH3_kebaRHG-0udN5RPI128KG_JVeN7RLe_e05-XxZb1dvxebj9X31vCmcqKqhUII5WdZWC2d5pbKQKB3n4BolKsmEkw2rtFOoEWvOtZK2qgFqdCoTazEnD9PdDHoaMQ2mzYx9fmm4lKAllOXZBZPLxZBSxMYcoz_Y-GMYmHNZpjW9NeeyzFRWjjxNEcz03x6jSc5j77D2Ed1g6uD_D_8CsDxv9w</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Okabe, Shinya</creator><creator>Yoshizawa, Kensuke</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0103-7449</orcidid></search><sort><creationdate>202009</creationdate><title>The obstacle problem for a fourth order semilinear parabolic equation</title><author>Okabe, Shinya ; Yoshizawa, Kensuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-631c45da93ca2861c44e4c220cf638413c4f189c6e9eed22964a8d00dec600093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Barriers</topic><topic>Fourth order semilinear parabolic equation</topic><topic>Gradient flow</topic><topic>Minimizing movements</topic><topic>Obstacle problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okabe, Shinya</creatorcontrib><creatorcontrib>Yoshizawa, Kensuke</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okabe, Shinya</au><au>Yoshizawa, Kensuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The obstacle problem for a fourth order semilinear parabolic equation</atitle><jtitle>Nonlinear analysis</jtitle><date>2020-09</date><risdate>2020</risdate><volume>198</volume><spage>111902</spage><pages>111902-</pages><artnum>111902</artnum><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>This paper is concerned with the obstacle problem for the L2-gradient flow for a functional which is higher order, non-convex and unbounded from below. We prove (i) the existence and uniqueness of local-in-time solutions to the obstacle problem and (ii) a gradient structure of the functional of the solutions, via minimizing movements. Moreover, we show the existence of solutions which blow up in a finite time.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2020.111902</doi><orcidid>https://orcid.org/0000-0003-0103-7449</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2020-09, Vol.198, p.111902, Article 111902
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_journals_2440940559
source Elsevier ScienceDirect Journals
subjects Barriers
Fourth order semilinear parabolic equation
Gradient flow
Minimizing movements
Obstacle problem
title The obstacle problem for a fourth order semilinear parabolic equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20obstacle%20problem%20for%20a%20fourth%20order%20semilinear%20parabolic%20equation&rft.jtitle=Nonlinear%20analysis&rft.au=Okabe,%20Shinya&rft.date=2020-09&rft.volume=198&rft.spage=111902&rft.pages=111902-&rft.artnum=111902&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2020.111902&rft_dat=%3Cproquest_cross%3E2440940559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440940559&rft_id=info:pmid/&rft_els_id=S0362546X20301619&rfr_iscdi=true