Plasmon‐Induced Optical Magnetism in an Ultrathin Metal Nanosphere‐Based Dimer‐on‐Film Nanocavity

Recently, plasmon‐induced optical magnetism has attracted much research interest in nanophotonics and plasmonics due to intriguing applications in optical metamaterials, and ultrasensitive plasmonic nano‐metrology, among many others. Here, a strong in‐plane magnetic dipolar resonance in an ultrathin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2020-09, Vol.14 (9), p.n/a
Hauptverfasser: Meng, Yongjun, Zhang, Qiang, Lei, Dangyuan, Li, Yonglong, Li, Siqi, Liu, Zhenzhen, Xie, Wei, Leung, Chi Wah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Laser & photonics reviews
container_volume 14
creator Meng, Yongjun
Zhang, Qiang
Lei, Dangyuan
Li, Yonglong
Li, Siqi
Liu, Zhenzhen
Xie, Wei
Leung, Chi Wah
description Recently, plasmon‐induced optical magnetism has attracted much research interest in nanophotonics and plasmonics due to intriguing applications in optical metamaterials, and ultrasensitive plasmonic nano‐metrology, among many others. Here, a strong in‐plane magnetic dipolar resonance in an ultrathin plasmonic nanocavity consisting of a silica‐coated gold nanosphere dimer coupled to a gold thin film is observed experimentally and explained theoretically. Multipolar expansion and numerical simulation disclose that such magnetic resonance is induced by a displacement current loop circulating around a nanometer thick triangular region in the cavity. The spectral response and radiation polarization of the magnetic mode are “visualized” by using a polarization‐resolved dark‐field imaging system at the single‐particle level. The resonance responses of this magnetic mode highly depends on cavity gap thickness, nanosphere dimension, and the incident angle, allowing straightforward resonance tuning from the visible to near‐infrared region and thus opening up a new avenue for magnetic resonance‐enhanced nonlinear optics and chiral optics. Plasmon‐induced optical magnetism represents a promising approach to generate pronounced magnetic response in nonmagnetic‐metal nanostructures. Here, a strong in‐plane magnetic dipolar mode in a gold nanosphere‐based dimer‐on‐film nanocavity is observed, its physical origin is theoretically disclosed, and the geometry‐ and excitation‐dependent resonance frequency and scattering amplitude are demonstrated.
doi_str_mv 10.1002/lpor.202000068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440867201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440867201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-a67f1fa0c1045d7c07b9ecfa4a3859ac869920030cd6e405d2186307fa6a1d493</originalsourceid><addsrcrecordid>eNqFkMtOAzEMRSMEEqWwZT0S6ynOPDLJklehUksrRNeRyWRoqnmRTEHd8Ql8I19C2qKyxBvb8j22fAk5pzCgANFl2TZ2EEEEPhg_ID3KWRxyLsThvuZwTE6cWwKkPliPmFmJrmrq78-vUZ2vlM6DadsZhWUwwddad8ZVgakDrIN52VnsFr6Z6M7PH7FuXLvQVnv4Gp1Hb02lre-2-4amrLYihe-mW5-SowJLp89-c5_Mh3fPNw_heHo_urkahyqmGQ-RZQUtEBSFJM0zBdmL0KrABGOeClScCeFfjEHlTCeQ5tHmNcgKZEjzRMR9crHb29rmbaVdJ5fNytb-pIySBDjLIqBeNdiplG2cs7qQrTUV2rWkIDd2yo2dcm-nB8QO-DClXv-jluPZ9OmP_QFo433e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440867201</pqid></control><display><type>article</type><title>Plasmon‐Induced Optical Magnetism in an Ultrathin Metal Nanosphere‐Based Dimer‐on‐Film Nanocavity</title><source>Wiley Online Library All Journals</source><creator>Meng, Yongjun ; Zhang, Qiang ; Lei, Dangyuan ; Li, Yonglong ; Li, Siqi ; Liu, Zhenzhen ; Xie, Wei ; Leung, Chi Wah</creator><creatorcontrib>Meng, Yongjun ; Zhang, Qiang ; Lei, Dangyuan ; Li, Yonglong ; Li, Siqi ; Liu, Zhenzhen ; Xie, Wei ; Leung, Chi Wah</creatorcontrib><description>Recently, plasmon‐induced optical magnetism has attracted much research interest in nanophotonics and plasmonics due to intriguing applications in optical metamaterials, and ultrasensitive plasmonic nano‐metrology, among many others. Here, a strong in‐plane magnetic dipolar resonance in an ultrathin plasmonic nanocavity consisting of a silica‐coated gold nanosphere dimer coupled to a gold thin film is observed experimentally and explained theoretically. Multipolar expansion and numerical simulation disclose that such magnetic resonance is induced by a displacement current loop circulating around a nanometer thick triangular region in the cavity. The spectral response and radiation polarization of the magnetic mode are “visualized” by using a polarization‐resolved dark‐field imaging system at the single‐particle level. The resonance responses of this magnetic mode highly depends on cavity gap thickness, nanosphere dimension, and the incident angle, allowing straightforward resonance tuning from the visible to near‐infrared region and thus opening up a new avenue for magnetic resonance‐enhanced nonlinear optics and chiral optics. Plasmon‐induced optical magnetism represents a promising approach to generate pronounced magnetic response in nonmagnetic‐metal nanostructures. Here, a strong in‐plane magnetic dipolar mode in a gold nanosphere‐based dimer‐on‐film nanocavity is observed, its physical origin is theoretically disclosed, and the geometry‐ and excitation‐dependent resonance frequency and scattering amplitude are demonstrated.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202000068</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Computer simulation ; Dimers ; dimer‐on‐film ; Gold ; Magnetic resonance ; Magnetism ; Metamaterials ; multipolar expansion ; Nanospheres ; Nonlinear optics ; optical magnetism ; Optics ; plasmonic nanocavity ; Plasmonics ; Polarization ; Silicon dioxide ; Spectral sensitivity ; Thickness ; Thin films</subject><ispartof>Laser &amp; photonics reviews, 2020-09, Vol.14 (9), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-a67f1fa0c1045d7c07b9ecfa4a3859ac869920030cd6e405d2186307fa6a1d493</citedby><cites>FETCH-LOGICAL-c3178-a67f1fa0c1045d7c07b9ecfa4a3859ac869920030cd6e405d2186307fa6a1d493</cites><orcidid>0000-0002-8963-0193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.202000068$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.202000068$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Meng, Yongjun</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Lei, Dangyuan</creatorcontrib><creatorcontrib>Li, Yonglong</creatorcontrib><creatorcontrib>Li, Siqi</creatorcontrib><creatorcontrib>Liu, Zhenzhen</creatorcontrib><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Leung, Chi Wah</creatorcontrib><title>Plasmon‐Induced Optical Magnetism in an Ultrathin Metal Nanosphere‐Based Dimer‐on‐Film Nanocavity</title><title>Laser &amp; photonics reviews</title><description>Recently, plasmon‐induced optical magnetism has attracted much research interest in nanophotonics and plasmonics due to intriguing applications in optical metamaterials, and ultrasensitive plasmonic nano‐metrology, among many others. Here, a strong in‐plane magnetic dipolar resonance in an ultrathin plasmonic nanocavity consisting of a silica‐coated gold nanosphere dimer coupled to a gold thin film is observed experimentally and explained theoretically. Multipolar expansion and numerical simulation disclose that such magnetic resonance is induced by a displacement current loop circulating around a nanometer thick triangular region in the cavity. The spectral response and radiation polarization of the magnetic mode are “visualized” by using a polarization‐resolved dark‐field imaging system at the single‐particle level. The resonance responses of this magnetic mode highly depends on cavity gap thickness, nanosphere dimension, and the incident angle, allowing straightforward resonance tuning from the visible to near‐infrared region and thus opening up a new avenue for magnetic resonance‐enhanced nonlinear optics and chiral optics. Plasmon‐induced optical magnetism represents a promising approach to generate pronounced magnetic response in nonmagnetic‐metal nanostructures. Here, a strong in‐plane magnetic dipolar mode in a gold nanosphere‐based dimer‐on‐film nanocavity is observed, its physical origin is theoretically disclosed, and the geometry‐ and excitation‐dependent resonance frequency and scattering amplitude are demonstrated.</description><subject>Computer simulation</subject><subject>Dimers</subject><subject>dimer‐on‐film</subject><subject>Gold</subject><subject>Magnetic resonance</subject><subject>Magnetism</subject><subject>Metamaterials</subject><subject>multipolar expansion</subject><subject>Nanospheres</subject><subject>Nonlinear optics</subject><subject>optical magnetism</subject><subject>Optics</subject><subject>plasmonic nanocavity</subject><subject>Plasmonics</subject><subject>Polarization</subject><subject>Silicon dioxide</subject><subject>Spectral sensitivity</subject><subject>Thickness</subject><subject>Thin films</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOAzEMRSMEEqWwZT0S6ynOPDLJklehUksrRNeRyWRoqnmRTEHd8Ql8I19C2qKyxBvb8j22fAk5pzCgANFl2TZ2EEEEPhg_ID3KWRxyLsThvuZwTE6cWwKkPliPmFmJrmrq78-vUZ2vlM6DadsZhWUwwddad8ZVgakDrIN52VnsFr6Z6M7PH7FuXLvQVnv4Gp1Hb02lre-2-4amrLYihe-mW5-SowJLp89-c5_Mh3fPNw_heHo_urkahyqmGQ-RZQUtEBSFJM0zBdmL0KrABGOeClScCeFfjEHlTCeQ5tHmNcgKZEjzRMR9crHb29rmbaVdJ5fNytb-pIySBDjLIqBeNdiplG2cs7qQrTUV2rWkIDd2yo2dcm-nB8QO-DClXv-jluPZ9OmP_QFo433e</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Meng, Yongjun</creator><creator>Zhang, Qiang</creator><creator>Lei, Dangyuan</creator><creator>Li, Yonglong</creator><creator>Li, Siqi</creator><creator>Liu, Zhenzhen</creator><creator>Xie, Wei</creator><creator>Leung, Chi Wah</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8963-0193</orcidid></search><sort><creationdate>202009</creationdate><title>Plasmon‐Induced Optical Magnetism in an Ultrathin Metal Nanosphere‐Based Dimer‐on‐Film Nanocavity</title><author>Meng, Yongjun ; Zhang, Qiang ; Lei, Dangyuan ; Li, Yonglong ; Li, Siqi ; Liu, Zhenzhen ; Xie, Wei ; Leung, Chi Wah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-a67f1fa0c1045d7c07b9ecfa4a3859ac869920030cd6e405d2186307fa6a1d493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Dimers</topic><topic>dimer‐on‐film</topic><topic>Gold</topic><topic>Magnetic resonance</topic><topic>Magnetism</topic><topic>Metamaterials</topic><topic>multipolar expansion</topic><topic>Nanospheres</topic><topic>Nonlinear optics</topic><topic>optical magnetism</topic><topic>Optics</topic><topic>plasmonic nanocavity</topic><topic>Plasmonics</topic><topic>Polarization</topic><topic>Silicon dioxide</topic><topic>Spectral sensitivity</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Yongjun</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Lei, Dangyuan</creatorcontrib><creatorcontrib>Li, Yonglong</creatorcontrib><creatorcontrib>Li, Siqi</creatorcontrib><creatorcontrib>Liu, Zhenzhen</creatorcontrib><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Leung, Chi Wah</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Yongjun</au><au>Zhang, Qiang</au><au>Lei, Dangyuan</au><au>Li, Yonglong</au><au>Li, Siqi</au><au>Liu, Zhenzhen</au><au>Xie, Wei</au><au>Leung, Chi Wah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmon‐Induced Optical Magnetism in an Ultrathin Metal Nanosphere‐Based Dimer‐on‐Film Nanocavity</atitle><jtitle>Laser &amp; photonics reviews</jtitle><date>2020-09</date><risdate>2020</risdate><volume>14</volume><issue>9</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>Recently, plasmon‐induced optical magnetism has attracted much research interest in nanophotonics and plasmonics due to intriguing applications in optical metamaterials, and ultrasensitive plasmonic nano‐metrology, among many others. Here, a strong in‐plane magnetic dipolar resonance in an ultrathin plasmonic nanocavity consisting of a silica‐coated gold nanosphere dimer coupled to a gold thin film is observed experimentally and explained theoretically. Multipolar expansion and numerical simulation disclose that such magnetic resonance is induced by a displacement current loop circulating around a nanometer thick triangular region in the cavity. The spectral response and radiation polarization of the magnetic mode are “visualized” by using a polarization‐resolved dark‐field imaging system at the single‐particle level. The resonance responses of this magnetic mode highly depends on cavity gap thickness, nanosphere dimension, and the incident angle, allowing straightforward resonance tuning from the visible to near‐infrared region and thus opening up a new avenue for magnetic resonance‐enhanced nonlinear optics and chiral optics. Plasmon‐induced optical magnetism represents a promising approach to generate pronounced magnetic response in nonmagnetic‐metal nanostructures. Here, a strong in‐plane magnetic dipolar mode in a gold nanosphere‐based dimer‐on‐film nanocavity is observed, its physical origin is theoretically disclosed, and the geometry‐ and excitation‐dependent resonance frequency and scattering amplitude are demonstrated.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.202000068</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8963-0193</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2020-09, Vol.14 (9), p.n/a
issn 1863-8880
1863-8899
language eng
recordid cdi_proquest_journals_2440867201
source Wiley Online Library All Journals
subjects Computer simulation
Dimers
dimer‐on‐film
Gold
Magnetic resonance
Magnetism
Metamaterials
multipolar expansion
Nanospheres
Nonlinear optics
optical magnetism
Optics
plasmonic nanocavity
Plasmonics
Polarization
Silicon dioxide
Spectral sensitivity
Thickness
Thin films
title Plasmon‐Induced Optical Magnetism in an Ultrathin Metal Nanosphere‐Based Dimer‐on‐Film Nanocavity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmon%E2%80%90Induced%20Optical%20Magnetism%20in%20an%20Ultrathin%20Metal%20Nanosphere%E2%80%90Based%20Dimer%E2%80%90on%E2%80%90Film%20Nanocavity&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Meng,%20Yongjun&rft.date=2020-09&rft.volume=14&rft.issue=9&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202000068&rft_dat=%3Cproquest_cross%3E2440867201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440867201&rft_id=info:pmid/&rfr_iscdi=true