Teaching machine learning with an application in collider particle physics
We describe a hands-on introduction to deep learning in particle physics, performed during the 5th INFIERI school in Wuhan, China. We presented fundamental machine learning concepts to students from diverse backgrounds in physics and computing, and prepared them to apply these techniques to solve an...
Gespeichert in:
Veröffentlicht in: | Journal of instrumentation 2020-09, Vol.15 (9), p.C09011-C09011 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | C09011 |
---|---|
container_issue | 9 |
container_start_page | C09011 |
container_title | Journal of instrumentation |
container_volume | 15 |
creator | Benato, L. Connor, P.L.S. Kasieczka, G. Krücker, D. Meyer, M. |
description | We describe a hands-on introduction to deep learning in particle physics, performed during the 5th INFIERI school in Wuhan, China. We presented fundamental machine learning concepts to students from diverse backgrounds in physics and computing, and prepared them to apply these techniques to solve an example problem from particle physics (hadronic top quark tagging). We exploited the simplicity of tools like Jupyter notebooks, and the user-friendly approaches of data science libraries such as Keras with TensorFlow. |
doi_str_mv | 10.1088/1748-0221/15/09/C09011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440688963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440688963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-ac6a952152d086f951b18abb44562fb365002b0f551b425a1e6bd9b880b510893</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKtfQQKe153JJjE5SvEvBS_1HJI0a1O2u2uyRfrt3bUint4w7zHD-xFyjXCLoFSJd1wVwBiWKErQ5QI0IJ6Q2Z9x-m8-Jxc5bwGEFhxm5HUVrN_E9oPufjTQJtjUTouvOGyobant-yZ6O8SupbGlvmuauA6J9jYN0TeB9ptDjj5fkrPaNjlc_eqcvD8-rBbPxfLt6WVxvyx8VeFQWC-tFgwFW4OStRboUFnnOBeS1a6SAoA5qMVocCYsBunW2ikFTox9dTUnN8e7feo-9yEPZtvtUzu-NIxzkEppWY0peUz51OWcQm36FHc2HQyCmbiZCYmZkBgUBrQ5cqu-ATXwX6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440688963</pqid></control><display><type>article</type><title>Teaching machine learning with an application in collider particle physics</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Benato, L. ; Connor, P.L.S. ; Kasieczka, G. ; Krücker, D. ; Meyer, M.</creator><creatorcontrib>Benato, L. ; Connor, P.L.S. ; Kasieczka, G. ; Krücker, D. ; Meyer, M.</creatorcontrib><description>We describe a hands-on introduction to deep learning in particle physics, performed during the 5th INFIERI school in Wuhan, China. We presented fundamental machine learning concepts to students from diverse backgrounds in physics and computing, and prepared them to apply these techniques to solve an example problem from particle physics (hadronic top quark tagging). We exploited the simplicity of tools like Jupyter notebooks, and the user-friendly approaches of data science libraries such as Keras with TensorFlow.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/15/09/C09011</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Machine learning ; Particle physics ; Quarks ; Teaching ; Teaching machines</subject><ispartof>Journal of instrumentation, 2020-09, Vol.15 (9), p.C09011-C09011</ispartof><rights>Copyright IOP Publishing Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-ac6a952152d086f951b18abb44562fb365002b0f551b425a1e6bd9b880b510893</citedby><cites>FETCH-LOGICAL-c331t-ac6a952152d086f951b18abb44562fb365002b0f551b425a1e6bd9b880b510893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Benato, L.</creatorcontrib><creatorcontrib>Connor, P.L.S.</creatorcontrib><creatorcontrib>Kasieczka, G.</creatorcontrib><creatorcontrib>Krücker, D.</creatorcontrib><creatorcontrib>Meyer, M.</creatorcontrib><title>Teaching machine learning with an application in collider particle physics</title><title>Journal of instrumentation</title><description>We describe a hands-on introduction to deep learning in particle physics, performed during the 5th INFIERI school in Wuhan, China. We presented fundamental machine learning concepts to students from diverse backgrounds in physics and computing, and prepared them to apply these techniques to solve an example problem from particle physics (hadronic top quark tagging). We exploited the simplicity of tools like Jupyter notebooks, and the user-friendly approaches of data science libraries such as Keras with TensorFlow.</description><subject>Machine learning</subject><subject>Particle physics</subject><subject>Quarks</subject><subject>Teaching</subject><subject>Teaching machines</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEQxYMoWKtfQQKe153JJjE5SvEvBS_1HJI0a1O2u2uyRfrt3bUint4w7zHD-xFyjXCLoFSJd1wVwBiWKErQ5QI0IJ6Q2Z9x-m8-Jxc5bwGEFhxm5HUVrN_E9oPufjTQJtjUTouvOGyobant-yZ6O8SupbGlvmuauA6J9jYN0TeB9ptDjj5fkrPaNjlc_eqcvD8-rBbPxfLt6WVxvyx8VeFQWC-tFgwFW4OStRboUFnnOBeS1a6SAoA5qMVocCYsBunW2ikFTox9dTUnN8e7feo-9yEPZtvtUzu-NIxzkEppWY0peUz51OWcQm36FHc2HQyCmbiZCYmZkBgUBrQ5cqu-ATXwX6Q</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Benato, L.</creator><creator>Connor, P.L.S.</creator><creator>Kasieczka, G.</creator><creator>Krücker, D.</creator><creator>Meyer, M.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20200901</creationdate><title>Teaching machine learning with an application in collider particle physics</title><author>Benato, L. ; Connor, P.L.S. ; Kasieczka, G. ; Krücker, D. ; Meyer, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-ac6a952152d086f951b18abb44562fb365002b0f551b425a1e6bd9b880b510893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Machine learning</topic><topic>Particle physics</topic><topic>Quarks</topic><topic>Teaching</topic><topic>Teaching machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benato, L.</creatorcontrib><creatorcontrib>Connor, P.L.S.</creatorcontrib><creatorcontrib>Kasieczka, G.</creatorcontrib><creatorcontrib>Krücker, D.</creatorcontrib><creatorcontrib>Meyer, M.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benato, L.</au><au>Connor, P.L.S.</au><au>Kasieczka, G.</au><au>Krücker, D.</au><au>Meyer, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Teaching machine learning with an application in collider particle physics</atitle><jtitle>Journal of instrumentation</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>15</volume><issue>9</issue><spage>C09011</spage><epage>C09011</epage><pages>C09011-C09011</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>We describe a hands-on introduction to deep learning in particle physics, performed during the 5th INFIERI school in Wuhan, China. We presented fundamental machine learning concepts to students from diverse backgrounds in physics and computing, and prepared them to apply these techniques to solve an example problem from particle physics (hadronic top quark tagging). We exploited the simplicity of tools like Jupyter notebooks, and the user-friendly approaches of data science libraries such as Keras with TensorFlow.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/15/09/C09011</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-0221 |
ispartof | Journal of instrumentation, 2020-09, Vol.15 (9), p.C09011-C09011 |
issn | 1748-0221 1748-0221 |
language | eng |
recordid | cdi_proquest_journals_2440688963 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Machine learning Particle physics Quarks Teaching Teaching machines |
title | Teaching machine learning with an application in collider particle physics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Teaching%20machine%20learning%20with%20an%20application%20in%20collider%20particle%20physics&rft.jtitle=Journal%20of%20instrumentation&rft.au=Benato,%20L.&rft.date=2020-09-01&rft.volume=15&rft.issue=9&rft.spage=C09011&rft.epage=C09011&rft.pages=C09011-C09011&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/15/09/C09011&rft_dat=%3Cproquest_cross%3E2440688963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440688963&rft_id=info:pmid/&rfr_iscdi=true |