Teaching machine learning with an application in collider particle physics

We describe a hands-on introduction to deep learning in particle physics, performed during the 5th INFIERI school in Wuhan, China. We presented fundamental machine learning concepts to students from diverse backgrounds in physics and computing, and prepared them to apply these techniques to solve an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2020-09, Vol.15 (9), p.C09011-C09011
Hauptverfasser: Benato, L., Connor, P.L.S., Kasieczka, G., Krücker, D., Meyer, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page C09011
container_issue 9
container_start_page C09011
container_title Journal of instrumentation
container_volume 15
creator Benato, L.
Connor, P.L.S.
Kasieczka, G.
Krücker, D.
Meyer, M.
description We describe a hands-on introduction to deep learning in particle physics, performed during the 5th INFIERI school in Wuhan, China. We presented fundamental machine learning concepts to students from diverse backgrounds in physics and computing, and prepared them to apply these techniques to solve an example problem from particle physics (hadronic top quark tagging). We exploited the simplicity of tools like Jupyter notebooks, and the user-friendly approaches of data science libraries such as Keras with TensorFlow.
doi_str_mv 10.1088/1748-0221/15/09/C09011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440688963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440688963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-ac6a952152d086f951b18abb44562fb365002b0f551b425a1e6bd9b880b510893</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKtfQQKe153JJjE5SvEvBS_1HJI0a1O2u2uyRfrt3bUint4w7zHD-xFyjXCLoFSJd1wVwBiWKErQ5QI0IJ6Q2Z9x-m8-Jxc5bwGEFhxm5HUVrN_E9oPufjTQJtjUTouvOGyobant-yZ6O8SupbGlvmuauA6J9jYN0TeB9ptDjj5fkrPaNjlc_eqcvD8-rBbPxfLt6WVxvyx8VeFQWC-tFgwFW4OStRboUFnnOBeS1a6SAoA5qMVocCYsBunW2ikFTox9dTUnN8e7feo-9yEPZtvtUzu-NIxzkEppWY0peUz51OWcQm36FHc2HQyCmbiZCYmZkBgUBrQ5cqu-ATXwX6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440688963</pqid></control><display><type>article</type><title>Teaching machine learning with an application in collider particle physics</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Benato, L. ; Connor, P.L.S. ; Kasieczka, G. ; Krücker, D. ; Meyer, M.</creator><creatorcontrib>Benato, L. ; Connor, P.L.S. ; Kasieczka, G. ; Krücker, D. ; Meyer, M.</creatorcontrib><description>We describe a hands-on introduction to deep learning in particle physics, performed during the 5th INFIERI school in Wuhan, China. We presented fundamental machine learning concepts to students from diverse backgrounds in physics and computing, and prepared them to apply these techniques to solve an example problem from particle physics (hadronic top quark tagging). We exploited the simplicity of tools like Jupyter notebooks, and the user-friendly approaches of data science libraries such as Keras with TensorFlow.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/15/09/C09011</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Machine learning ; Particle physics ; Quarks ; Teaching ; Teaching machines</subject><ispartof>Journal of instrumentation, 2020-09, Vol.15 (9), p.C09011-C09011</ispartof><rights>Copyright IOP Publishing Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-ac6a952152d086f951b18abb44562fb365002b0f551b425a1e6bd9b880b510893</citedby><cites>FETCH-LOGICAL-c331t-ac6a952152d086f951b18abb44562fb365002b0f551b425a1e6bd9b880b510893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Benato, L.</creatorcontrib><creatorcontrib>Connor, P.L.S.</creatorcontrib><creatorcontrib>Kasieczka, G.</creatorcontrib><creatorcontrib>Krücker, D.</creatorcontrib><creatorcontrib>Meyer, M.</creatorcontrib><title>Teaching machine learning with an application in collider particle physics</title><title>Journal of instrumentation</title><description>We describe a hands-on introduction to deep learning in particle physics, performed during the 5th INFIERI school in Wuhan, China. We presented fundamental machine learning concepts to students from diverse backgrounds in physics and computing, and prepared them to apply these techniques to solve an example problem from particle physics (hadronic top quark tagging). We exploited the simplicity of tools like Jupyter notebooks, and the user-friendly approaches of data science libraries such as Keras with TensorFlow.</description><subject>Machine learning</subject><subject>Particle physics</subject><subject>Quarks</subject><subject>Teaching</subject><subject>Teaching machines</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEQxYMoWKtfQQKe153JJjE5SvEvBS_1HJI0a1O2u2uyRfrt3bUint4w7zHD-xFyjXCLoFSJd1wVwBiWKErQ5QI0IJ6Q2Z9x-m8-Jxc5bwGEFhxm5HUVrN_E9oPufjTQJtjUTouvOGyobant-yZ6O8SupbGlvmuauA6J9jYN0TeB9ptDjj5fkrPaNjlc_eqcvD8-rBbPxfLt6WVxvyx8VeFQWC-tFgwFW4OStRboUFnnOBeS1a6SAoA5qMVocCYsBunW2ikFTox9dTUnN8e7feo-9yEPZtvtUzu-NIxzkEppWY0peUz51OWcQm36FHc2HQyCmbiZCYmZkBgUBrQ5cqu-ATXwX6Q</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Benato, L.</creator><creator>Connor, P.L.S.</creator><creator>Kasieczka, G.</creator><creator>Krücker, D.</creator><creator>Meyer, M.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20200901</creationdate><title>Teaching machine learning with an application in collider particle physics</title><author>Benato, L. ; Connor, P.L.S. ; Kasieczka, G. ; Krücker, D. ; Meyer, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-ac6a952152d086f951b18abb44562fb365002b0f551b425a1e6bd9b880b510893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Machine learning</topic><topic>Particle physics</topic><topic>Quarks</topic><topic>Teaching</topic><topic>Teaching machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benato, L.</creatorcontrib><creatorcontrib>Connor, P.L.S.</creatorcontrib><creatorcontrib>Kasieczka, G.</creatorcontrib><creatorcontrib>Krücker, D.</creatorcontrib><creatorcontrib>Meyer, M.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benato, L.</au><au>Connor, P.L.S.</au><au>Kasieczka, G.</au><au>Krücker, D.</au><au>Meyer, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Teaching machine learning with an application in collider particle physics</atitle><jtitle>Journal of instrumentation</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>15</volume><issue>9</issue><spage>C09011</spage><epage>C09011</epage><pages>C09011-C09011</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>We describe a hands-on introduction to deep learning in particle physics, performed during the 5th INFIERI school in Wuhan, China. We presented fundamental machine learning concepts to students from diverse backgrounds in physics and computing, and prepared them to apply these techniques to solve an example problem from particle physics (hadronic top quark tagging). We exploited the simplicity of tools like Jupyter notebooks, and the user-friendly approaches of data science libraries such as Keras with TensorFlow.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/15/09/C09011</doi></addata></record>
fulltext fulltext
identifier ISSN: 1748-0221
ispartof Journal of instrumentation, 2020-09, Vol.15 (9), p.C09011-C09011
issn 1748-0221
1748-0221
language eng
recordid cdi_proquest_journals_2440688963
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Machine learning
Particle physics
Quarks
Teaching
Teaching machines
title Teaching machine learning with an application in collider particle physics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Teaching%20machine%20learning%20with%20an%20application%20in%20collider%20particle%20physics&rft.jtitle=Journal%20of%20instrumentation&rft.au=Benato,%20L.&rft.date=2020-09-01&rft.volume=15&rft.issue=9&rft.spage=C09011&rft.epage=C09011&rft.pages=C09011-C09011&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/15/09/C09011&rft_dat=%3Cproquest_cross%3E2440688963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440688963&rft_id=info:pmid/&rfr_iscdi=true