Effect of surface treatments on microstructure and stress corrosion cracking behavior of 308L weld metal in a primary pressurized water reactor environment

•Milling, mechanically grinding and electropolishing promote SCC of 308L weld metal.•Composition change and etched phase boundary cause SCC of electropolished surface.•Machining produces a nanocrystalline layer and an underlying deformed layer.•Elongated ferrite phases in nanocrystalline layer incre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2020-04, Vol.166, p.108465, Article 108465
Hauptverfasser: Dong, Lijin, Zhang, Xiaolong, Han, Yaolei, Peng, Qunjia, Deng, Ping, Wang, Shuliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108465
container_title Corrosion science
container_volume 166
creator Dong, Lijin
Zhang, Xiaolong
Han, Yaolei
Peng, Qunjia
Deng, Ping
Wang, Shuliang
description •Milling, mechanically grinding and electropolishing promote SCC of 308L weld metal.•Composition change and etched phase boundary cause SCC of electropolished surface.•Machining produces a nanocrystalline layer and an underlying deformed layer.•Elongated ferrite phases in nanocrystalline layer increase SCC of machined surface. Effect of surface treatments on microstructure and stress corrosion cracking (SCC) of 308L weld metal in primary pressurized water reactor environment was evaluated by microstructure characterization and bent beam tests. The results showed that no SCC was observed on colloidal silica slurry polished surface while the change in composition and etched phase boundary promote SCC initiation after electropolishing. Further, milling and grinding produce a nanocrystalline layer and an underlying deformed layer on the surface. The nano-sized δ ferrite phase has a detrimental effect on SCC due to the synergistic effect of high concentration of dislocations and its nano size.
doi_str_mv 10.1016/j.corsci.2020.108465
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440684408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X1932236X</els_id><sourcerecordid>2440684408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b571a368a4ee454616c7b372acc0567560669e421a88002a9a5bca55043c4e33</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRBILKX_gIMlztnaseM4FyRUlRZppV566M3yOpPiZdcuY2cr-Cv8WSZKz1w8sv0-9OYx9kmKrRTSXB22IWMJcduKdnmy2nRv2EbafmiEHsxbthFCimZQ9vE9-1DKQQhCSrFhf2-mCULleeJlxskH4BXB1xOkWnhO_BQD5lJxDnVG4D6NnG5QCidP-omECejDz5ie-B5--HPMuMgpYXf8BY4jP0H1Rx4T9_wZ48njb5qkMGP8AyN_8RWQk2moxIR0jpjT4v-RvZv8scDl67xgD99uHq7vmt397ffrr7smKKVrs-966ZWxXgPoThtpQr9XfetDEJ3pOyOMGUC30ltLsf3gu33wXSe0ChqUumCfV9lnzL9mKNUd8oyJHF2rtTCWDksovaKWdRSEyb1mcVK4pQV3cGsLbmnBrS0Q7ctKAwpwjoCOEJACjBFp727M8f8C_wCjOZT9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440684408</pqid></control><display><type>article</type><title>Effect of surface treatments on microstructure and stress corrosion cracking behavior of 308L weld metal in a primary pressurized water reactor environment</title><source>Elsevier ScienceDirect Journals</source><creator>Dong, Lijin ; Zhang, Xiaolong ; Han, Yaolei ; Peng, Qunjia ; Deng, Ping ; Wang, Shuliang</creator><creatorcontrib>Dong, Lijin ; Zhang, Xiaolong ; Han, Yaolei ; Peng, Qunjia ; Deng, Ping ; Wang, Shuliang</creatorcontrib><description>•Milling, mechanically grinding and electropolishing promote SCC of 308L weld metal.•Composition change and etched phase boundary cause SCC of electropolished surface.•Machining produces a nanocrystalline layer and an underlying deformed layer.•Elongated ferrite phases in nanocrystalline layer increase SCC of machined surface. Effect of surface treatments on microstructure and stress corrosion cracking (SCC) of 308L weld metal in primary pressurized water reactor environment was evaluated by microstructure characterization and bent beam tests. The results showed that no SCC was observed on colloidal silica slurry polished surface while the change in composition and etched phase boundary promote SCC initiation after electropolishing. Further, milling and grinding produce a nanocrystalline layer and an underlying deformed layer on the surface. The nano-sized δ ferrite phase has a detrimental effect on SCC due to the synergistic effect of high concentration of dislocations and its nano size.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2020.108465</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>A. Stainless steel ; B. SEM ; B. TEM ; C. Stress corrosion ; C. Welding ; Comminution ; Corrosion effects ; Delta ferrite ; Electropolishing ; Grinding mills ; Microstructure ; Pressurized water reactors ; Silicon dioxide ; Stress corrosion cracking ; Synergistic effect ; Weld metal</subject><ispartof>Corrosion science, 2020-04, Vol.166, p.108465, Article 108465</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b571a368a4ee454616c7b372acc0567560669e421a88002a9a5bca55043c4e33</citedby><cites>FETCH-LOGICAL-c334t-b571a368a4ee454616c7b372acc0567560669e421a88002a9a5bca55043c4e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010938X1932236X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Dong, Lijin</creatorcontrib><creatorcontrib>Zhang, Xiaolong</creatorcontrib><creatorcontrib>Han, Yaolei</creatorcontrib><creatorcontrib>Peng, Qunjia</creatorcontrib><creatorcontrib>Deng, Ping</creatorcontrib><creatorcontrib>Wang, Shuliang</creatorcontrib><title>Effect of surface treatments on microstructure and stress corrosion cracking behavior of 308L weld metal in a primary pressurized water reactor environment</title><title>Corrosion science</title><description>•Milling, mechanically grinding and electropolishing promote SCC of 308L weld metal.•Composition change and etched phase boundary cause SCC of electropolished surface.•Machining produces a nanocrystalline layer and an underlying deformed layer.•Elongated ferrite phases in nanocrystalline layer increase SCC of machined surface. Effect of surface treatments on microstructure and stress corrosion cracking (SCC) of 308L weld metal in primary pressurized water reactor environment was evaluated by microstructure characterization and bent beam tests. The results showed that no SCC was observed on colloidal silica slurry polished surface while the change in composition and etched phase boundary promote SCC initiation after electropolishing. Further, milling and grinding produce a nanocrystalline layer and an underlying deformed layer on the surface. The nano-sized δ ferrite phase has a detrimental effect on SCC due to the synergistic effect of high concentration of dislocations and its nano size.</description><subject>A. Stainless steel</subject><subject>B. SEM</subject><subject>B. TEM</subject><subject>C. Stress corrosion</subject><subject>C. Welding</subject><subject>Comminution</subject><subject>Corrosion effects</subject><subject>Delta ferrite</subject><subject>Electropolishing</subject><subject>Grinding mills</subject><subject>Microstructure</subject><subject>Pressurized water reactors</subject><subject>Silicon dioxide</subject><subject>Stress corrosion cracking</subject><subject>Synergistic effect</subject><subject>Weld metal</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1DAQtRBILKX_gIMlztnaseM4FyRUlRZppV566M3yOpPiZdcuY2cr-Cv8WSZKz1w8sv0-9OYx9kmKrRTSXB22IWMJcduKdnmy2nRv2EbafmiEHsxbthFCimZQ9vE9-1DKQQhCSrFhf2-mCULleeJlxskH4BXB1xOkWnhO_BQD5lJxDnVG4D6NnG5QCidP-omECejDz5ie-B5--HPMuMgpYXf8BY4jP0H1Rx4T9_wZ48njb5qkMGP8AyN_8RWQk2moxIR0jpjT4v-RvZv8scDl67xgD99uHq7vmt397ffrr7smKKVrs-966ZWxXgPoThtpQr9XfetDEJ3pOyOMGUC30ltLsf3gu33wXSe0ChqUumCfV9lnzL9mKNUd8oyJHF2rtTCWDksovaKWdRSEyb1mcVK4pQV3cGsLbmnBrS0Q7ctKAwpwjoCOEJACjBFp727M8f8C_wCjOZT9</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Dong, Lijin</creator><creator>Zhang, Xiaolong</creator><creator>Han, Yaolei</creator><creator>Peng, Qunjia</creator><creator>Deng, Ping</creator><creator>Wang, Shuliang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20200415</creationdate><title>Effect of surface treatments on microstructure and stress corrosion cracking behavior of 308L weld metal in a primary pressurized water reactor environment</title><author>Dong, Lijin ; Zhang, Xiaolong ; Han, Yaolei ; Peng, Qunjia ; Deng, Ping ; Wang, Shuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b571a368a4ee454616c7b372acc0567560669e421a88002a9a5bca55043c4e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A. Stainless steel</topic><topic>B. SEM</topic><topic>B. TEM</topic><topic>C. Stress corrosion</topic><topic>C. Welding</topic><topic>Comminution</topic><topic>Corrosion effects</topic><topic>Delta ferrite</topic><topic>Electropolishing</topic><topic>Grinding mills</topic><topic>Microstructure</topic><topic>Pressurized water reactors</topic><topic>Silicon dioxide</topic><topic>Stress corrosion cracking</topic><topic>Synergistic effect</topic><topic>Weld metal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Lijin</creatorcontrib><creatorcontrib>Zhang, Xiaolong</creatorcontrib><creatorcontrib>Han, Yaolei</creatorcontrib><creatorcontrib>Peng, Qunjia</creatorcontrib><creatorcontrib>Deng, Ping</creatorcontrib><creatorcontrib>Wang, Shuliang</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Lijin</au><au>Zhang, Xiaolong</au><au>Han, Yaolei</au><au>Peng, Qunjia</au><au>Deng, Ping</au><au>Wang, Shuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of surface treatments on microstructure and stress corrosion cracking behavior of 308L weld metal in a primary pressurized water reactor environment</atitle><jtitle>Corrosion science</jtitle><date>2020-04-15</date><risdate>2020</risdate><volume>166</volume><spage>108465</spage><pages>108465-</pages><artnum>108465</artnum><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>•Milling, mechanically grinding and electropolishing promote SCC of 308L weld metal.•Composition change and etched phase boundary cause SCC of electropolished surface.•Machining produces a nanocrystalline layer and an underlying deformed layer.•Elongated ferrite phases in nanocrystalline layer increase SCC of machined surface. Effect of surface treatments on microstructure and stress corrosion cracking (SCC) of 308L weld metal in primary pressurized water reactor environment was evaluated by microstructure characterization and bent beam tests. The results showed that no SCC was observed on colloidal silica slurry polished surface while the change in composition and etched phase boundary promote SCC initiation after electropolishing. Further, milling and grinding produce a nanocrystalline layer and an underlying deformed layer on the surface. The nano-sized δ ferrite phase has a detrimental effect on SCC due to the synergistic effect of high concentration of dislocations and its nano size.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2020.108465</doi></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2020-04, Vol.166, p.108465, Article 108465
issn 0010-938X
1879-0496
language eng
recordid cdi_proquest_journals_2440684408
source Elsevier ScienceDirect Journals
subjects A. Stainless steel
B. SEM
B. TEM
C. Stress corrosion
C. Welding
Comminution
Corrosion effects
Delta ferrite
Electropolishing
Grinding mills
Microstructure
Pressurized water reactors
Silicon dioxide
Stress corrosion cracking
Synergistic effect
Weld metal
title Effect of surface treatments on microstructure and stress corrosion cracking behavior of 308L weld metal in a primary pressurized water reactor environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20surface%20treatments%20on%20microstructure%20and%20stress%20corrosion%20cracking%20behavior%20of%20308L%20weld%20metal%20in%20a%20primary%20pressurized%20water%20reactor%20environment&rft.jtitle=Corrosion%20science&rft.au=Dong,%20Lijin&rft.date=2020-04-15&rft.volume=166&rft.spage=108465&rft.pages=108465-&rft.artnum=108465&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2020.108465&rft_dat=%3Cproquest_cross%3E2440684408%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440684408&rft_id=info:pmid/&rft_els_id=S0010938X1932236X&rfr_iscdi=true