High order discriminant analysis based on Riemannian optimization

Supervised learning of linear discriminant analysis is a well-known algorithm in machine learning, but most of the discriminant relevant algorithms are generally fail to discover the nonlinear structures in dimensionality reduction. To address such problem, thus we propose a novel method for dimensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2020-05, Vol.195, p.105630, Article 105630
Hauptverfasser: Yin, Wanguang, Ma, Zhengming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105630
container_title Knowledge-based systems
container_volume 195
creator Yin, Wanguang
Ma, Zhengming
description Supervised learning of linear discriminant analysis is a well-known algorithm in machine learning, but most of the discriminant relevant algorithms are generally fail to discover the nonlinear structures in dimensionality reduction. To address such problem, thus we propose a novel method for dimensionality reduction of high-dimensional dataset, named manifold-based high order discriminant analysis (MHODA). Transforming the optimization problem from the constrained Euclidean space to a restricted search space of Riemannian manifold and employing the underlying geometry of nonlinear structures, it takes advantage of the fact that matrix manifold is actually of low dimension embedded into the ambient space. More concretely, we update the projection matrices for optimizing over the Stiefel manifold, and exploit the second order geometry of trust-region method. Moreover, in order to validate the efficiency and accuracy of the proposed algorithm, we conduct clustering and classification experiments by using six benchmark datasets. The numerical results demonstrate that MHODA is superiority to the most state-of-the-art methods.
doi_str_mv 10.1016/j.knosys.2020.105630
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440679639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705120300915</els_id><sourcerecordid>2440679639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-56b5d846975691f45a7cc94eaaac22296e4e7db1df7ae9d7231baab7e3b37f433</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKv_wMOC561JNps0F6EUtUJBED2Ht8lbzdomNdkK9de7ZT17ejDMDG8-Qq4ZnTHK5G03-wwxH_KMU36UalnREzJhc8VLJag-JROqa1oqWrNzcpFzRynlnM0nZLHy7x9FTA5T4Xy2yW99gNAXEGBzyD4XDWR0RQzFi8cthOAhFHHXD74f6H0Ml-SshU3Gq787JW8P96_LVbl-fnxaLtalFZT2ZS2b2s2F1KqWmrWiBmWtFggAlnOuJQpUrmGuVYDaKV6xBqBRWDWVakVVTcnN2LtL8WuPuTdd3Kfhy2y4EFQqLSs9uMTosinmnLA1u2ESpINh1Bxhmc6MsMwRlhlhDbG7MYbDgm-PyWTrMVh0PqHtjYv-_4JfDAF1Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440679639</pqid></control><display><type>article</type><title>High order discriminant analysis based on Riemannian optimization</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Yin, Wanguang ; Ma, Zhengming</creator><creatorcontrib>Yin, Wanguang ; Ma, Zhengming</creatorcontrib><description>Supervised learning of linear discriminant analysis is a well-known algorithm in machine learning, but most of the discriminant relevant algorithms are generally fail to discover the nonlinear structures in dimensionality reduction. To address such problem, thus we propose a novel method for dimensionality reduction of high-dimensional dataset, named manifold-based high order discriminant analysis (MHODA). Transforming the optimization problem from the constrained Euclidean space to a restricted search space of Riemannian manifold and employing the underlying geometry of nonlinear structures, it takes advantage of the fact that matrix manifold is actually of low dimension embedded into the ambient space. More concretely, we update the projection matrices for optimizing over the Stiefel manifold, and exploit the second order geometry of trust-region method. Moreover, in order to validate the efficiency and accuracy of the proposed algorithm, we conduct clustering and classification experiments by using six benchmark datasets. The numerical results demonstrate that MHODA is superiority to the most state-of-the-art methods.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2020.105630</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Classification ; Clustering ; Datasets ; Dimensionality reduction ; Discriminant analysis ; Euclidean geometry ; Euclidean space ; Machine learning ; Manifolds (mathematics) ; Optimization ; Product manifold ; Reduction ; Riemann manifold ; Riemannian optimization ; Stiefel manifold</subject><ispartof>Knowledge-based systems, 2020-05, Vol.195, p.105630, Article 105630</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. May 11, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-56b5d846975691f45a7cc94eaaac22296e4e7db1df7ae9d7231baab7e3b37f433</citedby><cites>FETCH-LOGICAL-c400t-56b5d846975691f45a7cc94eaaac22296e4e7db1df7ae9d7231baab7e3b37f433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2020.105630$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Yin, Wanguang</creatorcontrib><creatorcontrib>Ma, Zhengming</creatorcontrib><title>High order discriminant analysis based on Riemannian optimization</title><title>Knowledge-based systems</title><description>Supervised learning of linear discriminant analysis is a well-known algorithm in machine learning, but most of the discriminant relevant algorithms are generally fail to discover the nonlinear structures in dimensionality reduction. To address such problem, thus we propose a novel method for dimensionality reduction of high-dimensional dataset, named manifold-based high order discriminant analysis (MHODA). Transforming the optimization problem from the constrained Euclidean space to a restricted search space of Riemannian manifold and employing the underlying geometry of nonlinear structures, it takes advantage of the fact that matrix manifold is actually of low dimension embedded into the ambient space. More concretely, we update the projection matrices for optimizing over the Stiefel manifold, and exploit the second order geometry of trust-region method. Moreover, in order to validate the efficiency and accuracy of the proposed algorithm, we conduct clustering and classification experiments by using six benchmark datasets. The numerical results demonstrate that MHODA is superiority to the most state-of-the-art methods.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Clustering</subject><subject>Datasets</subject><subject>Dimensionality reduction</subject><subject>Discriminant analysis</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Machine learning</subject><subject>Manifolds (mathematics)</subject><subject>Optimization</subject><subject>Product manifold</subject><subject>Reduction</subject><subject>Riemann manifold</subject><subject>Riemannian optimization</subject><subject>Stiefel manifold</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEUhIMoWKv_wMOC561JNps0F6EUtUJBED2Ht8lbzdomNdkK9de7ZT17ejDMDG8-Qq4ZnTHK5G03-wwxH_KMU36UalnREzJhc8VLJag-JROqa1oqWrNzcpFzRynlnM0nZLHy7x9FTA5T4Xy2yW99gNAXEGBzyD4XDWR0RQzFi8cthOAhFHHXD74f6H0Ml-SshU3Gq787JW8P96_LVbl-fnxaLtalFZT2ZS2b2s2F1KqWmrWiBmWtFggAlnOuJQpUrmGuVYDaKV6xBqBRWDWVakVVTcnN2LtL8WuPuTdd3Kfhy2y4EFQqLSs9uMTosinmnLA1u2ESpINh1Bxhmc6MsMwRlhlhDbG7MYbDgm-PyWTrMVh0PqHtjYv-_4JfDAF1Nw</recordid><startdate>20200511</startdate><enddate>20200511</enddate><creator>Yin, Wanguang</creator><creator>Ma, Zhengming</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200511</creationdate><title>High order discriminant analysis based on Riemannian optimization</title><author>Yin, Wanguang ; Ma, Zhengming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-56b5d846975691f45a7cc94eaaac22296e4e7db1df7ae9d7231baab7e3b37f433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Clustering</topic><topic>Datasets</topic><topic>Dimensionality reduction</topic><topic>Discriminant analysis</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Machine learning</topic><topic>Manifolds (mathematics)</topic><topic>Optimization</topic><topic>Product manifold</topic><topic>Reduction</topic><topic>Riemann manifold</topic><topic>Riemannian optimization</topic><topic>Stiefel manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Wanguang</creatorcontrib><creatorcontrib>Ma, Zhengming</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Wanguang</au><au>Ma, Zhengming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High order discriminant analysis based on Riemannian optimization</atitle><jtitle>Knowledge-based systems</jtitle><date>2020-05-11</date><risdate>2020</risdate><volume>195</volume><spage>105630</spage><pages>105630-</pages><artnum>105630</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Supervised learning of linear discriminant analysis is a well-known algorithm in machine learning, but most of the discriminant relevant algorithms are generally fail to discover the nonlinear structures in dimensionality reduction. To address such problem, thus we propose a novel method for dimensionality reduction of high-dimensional dataset, named manifold-based high order discriminant analysis (MHODA). Transforming the optimization problem from the constrained Euclidean space to a restricted search space of Riemannian manifold and employing the underlying geometry of nonlinear structures, it takes advantage of the fact that matrix manifold is actually of low dimension embedded into the ambient space. More concretely, we update the projection matrices for optimizing over the Stiefel manifold, and exploit the second order geometry of trust-region method. Moreover, in order to validate the efficiency and accuracy of the proposed algorithm, we conduct clustering and classification experiments by using six benchmark datasets. The numerical results demonstrate that MHODA is superiority to the most state-of-the-art methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2020.105630</doi></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2020-05, Vol.195, p.105630, Article 105630
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2440679639
source ScienceDirect Freedom Collection (Elsevier)
subjects Algorithms
Classification
Clustering
Datasets
Dimensionality reduction
Discriminant analysis
Euclidean geometry
Euclidean space
Machine learning
Manifolds (mathematics)
Optimization
Product manifold
Reduction
Riemann manifold
Riemannian optimization
Stiefel manifold
title High order discriminant analysis based on Riemannian optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20order%20discriminant%20analysis%20based%20on%20Riemannian%20optimization&rft.jtitle=Knowledge-based%20systems&rft.au=Yin,%20Wanguang&rft.date=2020-05-11&rft.volume=195&rft.spage=105630&rft.pages=105630-&rft.artnum=105630&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2020.105630&rft_dat=%3Cproquest_cross%3E2440679639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440679639&rft_id=info:pmid/&rft_els_id=S0950705120300915&rfr_iscdi=true