Study of (AgxCu1−x)2ZnSn(S,Se)4 monograins synthesized by molten salt method for solar cell applications
•Single phase (AgxCu1−x)2ZnSn(S,Se)4 monograins were synthesized in molten flux.•Adding Ag to CZTSSe increases carrier concentration and decreases carrier lifetime.•Low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.•The Ag incorporation changed the dominant radiative...
Gespeichert in:
Veröffentlicht in: | Solar energy 2020-03, Vol.198, p.586-595 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 595 |
---|---|
container_issue | |
container_start_page | 586 |
container_title | Solar energy |
container_volume | 198 |
creator | Oueslati, S. Kauk-Kuusik, M. Neubauer, C. Mikli, V. Meissner, D. Brammertz, G. Vermang, B. Krustok, J. Grossberg, M. |
description | •Single phase (AgxCu1−x)2ZnSn(S,Se)4 monograins were synthesized in molten flux.•Adding Ag to CZTSSe increases carrier concentration and decreases carrier lifetime.•Low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.•The Ag incorporation changed the dominant radiative recombination channel in CZTSSe.•The Ag incorporation decreased the collection width as evaluated by the EBIC study.
The open circuit voltage (VOC) deficit of Cu2ZnSn(S,Se)4 (CZTSSe) kesterite solar cells is higher than that of the closely related Cu(InGa)Se2 solar cells. One of the most promising strategies to overcome the large VOC deficit of kesterite solar cells is by reducing the recombination losses through appropriate cation substitution. In fact, replacing totally or partially Zn or Cu by an element with larger covalent radius one can significantly reduce the concentration of I–II antisite defects in the bulk. In this study, an investigation of the impact of partial substitution of Cu by Ag in CZTSSe solid solution monograins is presented. A detailed photoluminescence study is conducted on Ag-incorporated CZTSSe monograins and a radiative recombination model is proposed. The composition and structural quality of the monograins in dependence of the added Ag amount are characterized using Energy Dispersive X-ray Spectroscopy and X-Ray Diffraction method, respectively. The Ag-incorporated CZTSSe monograin solar cells are characterized by temperature dependent current-voltage and electron beam induced current methods. It was found, that low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies. |
doi_str_mv | 10.1016/j.solener.2020.02.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440678121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X20301006</els_id><sourcerecordid>2440678121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-5ff133605e9ce3167a33258c5e11cd568db78eaa197493464142c6ffdd761e323</originalsourceid><addsrcrecordid>eNqFkM1qGzEQx0VJoI7TRygIcrEhu9VIu6v1KQTTtIFADk4g9CIUaTbRspYcSS5xn6DnPmKepGuce05z-H_MzI-Qr8BKYNB868sUBvQYS844KxkvGeOfyAQqCQXwWh6RCWOiLdiCP3wmJyn1jIGEVk5Iv8pbu6Oho7PLp9flFt7-_nud819-5Wer8xXOK7oOPjxF7XyiaefzMyb3By193I3KkNHTpIdM15ifg6VdiHS8RkdqcBio3mwGZ3R2wadTctzpIeGX9zkl91ff75Y_i5vbH9fLy5vCCCFzUXcdCNGwGhcGBTRSC8Hr1tQIYGzdtPZRtqg1LGS1EFVTQcVN03XWygZQcDElZ4feTQwvW0xZ9WEb_bhS8apijWyBw-iqDy4TQ0oRO7WJbq3jTgFTe6yqV-9Y1R6rYlyNWMfcxSGH4wu_3agm49AbtC6iycoG90HDfynjg_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440678121</pqid></control><display><type>article</type><title>Study of (AgxCu1−x)2ZnSn(S,Se)4 monograins synthesized by molten salt method for solar cell applications</title><source>Elsevier ScienceDirect Journals</source><creator>Oueslati, S. ; Kauk-Kuusik, M. ; Neubauer, C. ; Mikli, V. ; Meissner, D. ; Brammertz, G. ; Vermang, B. ; Krustok, J. ; Grossberg, M.</creator><creatorcontrib>Oueslati, S. ; Kauk-Kuusik, M. ; Neubauer, C. ; Mikli, V. ; Meissner, D. ; Brammertz, G. ; Vermang, B. ; Krustok, J. ; Grossberg, M.</creatorcontrib><description>•Single phase (AgxCu1−x)2ZnSn(S,Se)4 monograins were synthesized in molten flux.•Adding Ag to CZTSSe increases carrier concentration and decreases carrier lifetime.•Low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.•The Ag incorporation changed the dominant radiative recombination channel in CZTSSe.•The Ag incorporation decreased the collection width as evaluated by the EBIC study.
The open circuit voltage (VOC) deficit of Cu2ZnSn(S,Se)4 (CZTSSe) kesterite solar cells is higher than that of the closely related Cu(InGa)Se2 solar cells. One of the most promising strategies to overcome the large VOC deficit of kesterite solar cells is by reducing the recombination losses through appropriate cation substitution. In fact, replacing totally or partially Zn or Cu by an element with larger covalent radius one can significantly reduce the concentration of I–II antisite defects in the bulk. In this study, an investigation of the impact of partial substitution of Cu by Ag in CZTSSe solid solution monograins is presented. A detailed photoluminescence study is conducted on Ag-incorporated CZTSSe monograins and a radiative recombination model is proposed. The composition and structural quality of the monograins in dependence of the added Ag amount are characterized using Energy Dispersive X-ray Spectroscopy and X-Ray Diffraction method, respectively. The Ag-incorporated CZTSSe monograin solar cells are characterized by temperature dependent current-voltage and electron beam induced current methods. It was found, that low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2020.02.002</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Antisite defects ; Cations substituation ; Copper ; Copper indium gallium selenides ; Copper zinc tin sulfur selenide ; Electron beam induced current ; Kesterite ; Molten salts ; Monograins ; Open circuit voltage ; Photoluminescence ; Photons ; Photovoltaic cells ; Radiative recombination ; Recombination ; Silver ; Solar cells ; Solar energy ; Solid solutions ; Substitutes ; Temperature dependence ; Voltage ; X-ray diffraction ; X-ray spectroscopy</subject><ispartof>Solar energy, 2020-03, Vol.198, p.586-595</ispartof><rights>2020 International Solar Energy Society</rights><rights>Copyright Pergamon Press Inc. Mar 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-5ff133605e9ce3167a33258c5e11cd568db78eaa197493464142c6ffdd761e323</citedby><cites>FETCH-LOGICAL-c337t-5ff133605e9ce3167a33258c5e11cd568db78eaa197493464142c6ffdd761e323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2020.02.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Oueslati, S.</creatorcontrib><creatorcontrib>Kauk-Kuusik, M.</creatorcontrib><creatorcontrib>Neubauer, C.</creatorcontrib><creatorcontrib>Mikli, V.</creatorcontrib><creatorcontrib>Meissner, D.</creatorcontrib><creatorcontrib>Brammertz, G.</creatorcontrib><creatorcontrib>Vermang, B.</creatorcontrib><creatorcontrib>Krustok, J.</creatorcontrib><creatorcontrib>Grossberg, M.</creatorcontrib><title>Study of (AgxCu1−x)2ZnSn(S,Se)4 monograins synthesized by molten salt method for solar cell applications</title><title>Solar energy</title><description>•Single phase (AgxCu1−x)2ZnSn(S,Se)4 monograins were synthesized in molten flux.•Adding Ag to CZTSSe increases carrier concentration and decreases carrier lifetime.•Low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.•The Ag incorporation changed the dominant radiative recombination channel in CZTSSe.•The Ag incorporation decreased the collection width as evaluated by the EBIC study.
The open circuit voltage (VOC) deficit of Cu2ZnSn(S,Se)4 (CZTSSe) kesterite solar cells is higher than that of the closely related Cu(InGa)Se2 solar cells. One of the most promising strategies to overcome the large VOC deficit of kesterite solar cells is by reducing the recombination losses through appropriate cation substitution. In fact, replacing totally or partially Zn or Cu by an element with larger covalent radius one can significantly reduce the concentration of I–II antisite defects in the bulk. In this study, an investigation of the impact of partial substitution of Cu by Ag in CZTSSe solid solution monograins is presented. A detailed photoluminescence study is conducted on Ag-incorporated CZTSSe monograins and a radiative recombination model is proposed. The composition and structural quality of the monograins in dependence of the added Ag amount are characterized using Energy Dispersive X-ray Spectroscopy and X-Ray Diffraction method, respectively. The Ag-incorporated CZTSSe monograin solar cells are characterized by temperature dependent current-voltage and electron beam induced current methods. It was found, that low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.</description><subject>Antisite defects</subject><subject>Cations substituation</subject><subject>Copper</subject><subject>Copper indium gallium selenides</subject><subject>Copper zinc tin sulfur selenide</subject><subject>Electron beam induced current</subject><subject>Kesterite</subject><subject>Molten salts</subject><subject>Monograins</subject><subject>Open circuit voltage</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Radiative recombination</subject><subject>Recombination</subject><subject>Silver</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Solid solutions</subject><subject>Substitutes</subject><subject>Temperature dependence</subject><subject>Voltage</subject><subject>X-ray diffraction</subject><subject>X-ray spectroscopy</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1qGzEQx0VJoI7TRygIcrEhu9VIu6v1KQTTtIFADk4g9CIUaTbRspYcSS5xn6DnPmKepGuce05z-H_MzI-Qr8BKYNB868sUBvQYS844KxkvGeOfyAQqCQXwWh6RCWOiLdiCP3wmJyn1jIGEVk5Iv8pbu6Oho7PLp9flFt7-_nud819-5Wer8xXOK7oOPjxF7XyiaefzMyb3By193I3KkNHTpIdM15ifg6VdiHS8RkdqcBio3mwGZ3R2wadTctzpIeGX9zkl91ff75Y_i5vbH9fLy5vCCCFzUXcdCNGwGhcGBTRSC8Hr1tQIYGzdtPZRtqg1LGS1EFVTQcVN03XWygZQcDElZ4feTQwvW0xZ9WEb_bhS8apijWyBw-iqDy4TQ0oRO7WJbq3jTgFTe6yqV-9Y1R6rYlyNWMfcxSGH4wu_3agm49AbtC6iycoG90HDfynjg_s</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Oueslati, S.</creator><creator>Kauk-Kuusik, M.</creator><creator>Neubauer, C.</creator><creator>Mikli, V.</creator><creator>Meissner, D.</creator><creator>Brammertz, G.</creator><creator>Vermang, B.</creator><creator>Krustok, J.</creator><creator>Grossberg, M.</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200301</creationdate><title>Study of (AgxCu1−x)2ZnSn(S,Se)4 monograins synthesized by molten salt method for solar cell applications</title><author>Oueslati, S. ; Kauk-Kuusik, M. ; Neubauer, C. ; Mikli, V. ; Meissner, D. ; Brammertz, G. ; Vermang, B. ; Krustok, J. ; Grossberg, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-5ff133605e9ce3167a33258c5e11cd568db78eaa197493464142c6ffdd761e323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antisite defects</topic><topic>Cations substituation</topic><topic>Copper</topic><topic>Copper indium gallium selenides</topic><topic>Copper zinc tin sulfur selenide</topic><topic>Electron beam induced current</topic><topic>Kesterite</topic><topic>Molten salts</topic><topic>Monograins</topic><topic>Open circuit voltage</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Radiative recombination</topic><topic>Recombination</topic><topic>Silver</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Solid solutions</topic><topic>Substitutes</topic><topic>Temperature dependence</topic><topic>Voltage</topic><topic>X-ray diffraction</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oueslati, S.</creatorcontrib><creatorcontrib>Kauk-Kuusik, M.</creatorcontrib><creatorcontrib>Neubauer, C.</creatorcontrib><creatorcontrib>Mikli, V.</creatorcontrib><creatorcontrib>Meissner, D.</creatorcontrib><creatorcontrib>Brammertz, G.</creatorcontrib><creatorcontrib>Vermang, B.</creatorcontrib><creatorcontrib>Krustok, J.</creatorcontrib><creatorcontrib>Grossberg, M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oueslati, S.</au><au>Kauk-Kuusik, M.</au><au>Neubauer, C.</au><au>Mikli, V.</au><au>Meissner, D.</au><au>Brammertz, G.</au><au>Vermang, B.</au><au>Krustok, J.</au><au>Grossberg, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of (AgxCu1−x)2ZnSn(S,Se)4 monograins synthesized by molten salt method for solar cell applications</atitle><jtitle>Solar energy</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>198</volume><spage>586</spage><epage>595</epage><pages>586-595</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>•Single phase (AgxCu1−x)2ZnSn(S,Se)4 monograins were synthesized in molten flux.•Adding Ag to CZTSSe increases carrier concentration and decreases carrier lifetime.•Low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.•The Ag incorporation changed the dominant radiative recombination channel in CZTSSe.•The Ag incorporation decreased the collection width as evaluated by the EBIC study.
The open circuit voltage (VOC) deficit of Cu2ZnSn(S,Se)4 (CZTSSe) kesterite solar cells is higher than that of the closely related Cu(InGa)Se2 solar cells. One of the most promising strategies to overcome the large VOC deficit of kesterite solar cells is by reducing the recombination losses through appropriate cation substitution. In fact, replacing totally or partially Zn or Cu by an element with larger covalent radius one can significantly reduce the concentration of I–II antisite defects in the bulk. In this study, an investigation of the impact of partial substitution of Cu by Ag in CZTSSe solid solution monograins is presented. A detailed photoluminescence study is conducted on Ag-incorporated CZTSSe monograins and a radiative recombination model is proposed. The composition and structural quality of the monograins in dependence of the added Ag amount are characterized using Energy Dispersive X-ray Spectroscopy and X-Ray Diffraction method, respectively. The Ag-incorporated CZTSSe monograin solar cells are characterized by temperature dependent current-voltage and electron beam induced current methods. It was found, that low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2020.02.002</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 2020-03, Vol.198, p.586-595 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_proquest_journals_2440678121 |
source | Elsevier ScienceDirect Journals |
subjects | Antisite defects Cations substituation Copper Copper indium gallium selenides Copper zinc tin sulfur selenide Electron beam induced current Kesterite Molten salts Monograins Open circuit voltage Photoluminescence Photons Photovoltaic cells Radiative recombination Recombination Silver Solar cells Solar energy Solid solutions Substitutes Temperature dependence Voltage X-ray diffraction X-ray spectroscopy |
title | Study of (AgxCu1−x)2ZnSn(S,Se)4 monograins synthesized by molten salt method for solar cell applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20(AgxCu1%E2%88%92x)2ZnSn(S,Se)4%20monograins%20synthesized%20by%20molten%20salt%20method%20for%20solar%20cell%20applications&rft.jtitle=Solar%20energy&rft.au=Oueslati,%20S.&rft.date=2020-03-01&rft.volume=198&rft.spage=586&rft.epage=595&rft.pages=586-595&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2020.02.002&rft_dat=%3Cproquest_cross%3E2440678121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440678121&rft_id=info:pmid/&rft_els_id=S0038092X20301006&rfr_iscdi=true |