Study of (AgxCu1−x)2ZnSn(S,Se)4 monograins synthesized by molten salt method for solar cell applications

•Single phase (AgxCu1−x)2ZnSn(S,Se)4 monograins were synthesized in molten flux.•Adding Ag to CZTSSe increases carrier concentration and decreases carrier lifetime.•Low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.•The Ag incorporation changed the dominant radiative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2020-03, Vol.198, p.586-595
Hauptverfasser: Oueslati, S., Kauk-Kuusik, M., Neubauer, C., Mikli, V., Meissner, D., Brammertz, G., Vermang, B., Krustok, J., Grossberg, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 595
container_issue
container_start_page 586
container_title Solar energy
container_volume 198
creator Oueslati, S.
Kauk-Kuusik, M.
Neubauer, C.
Mikli, V.
Meissner, D.
Brammertz, G.
Vermang, B.
Krustok, J.
Grossberg, M.
description •Single phase (AgxCu1−x)2ZnSn(S,Se)4 monograins were synthesized in molten flux.•Adding Ag to CZTSSe increases carrier concentration and decreases carrier lifetime.•Low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.•The Ag incorporation changed the dominant radiative recombination channel in CZTSSe.•The Ag incorporation decreased the collection width as evaluated by the EBIC study. The open circuit voltage (VOC) deficit of Cu2ZnSn(S,Se)4 (CZTSSe) kesterite solar cells is higher than that of the closely related Cu(InGa)Se2 solar cells. One of the most promising strategies to overcome the large VOC deficit of kesterite solar cells is by reducing the recombination losses through appropriate cation substitution. In fact, replacing totally or partially Zn or Cu by an element with larger covalent radius one can significantly reduce the concentration of I–II antisite defects in the bulk. In this study, an investigation of the impact of partial substitution of Cu by Ag in CZTSSe solid solution monograins is presented. A detailed photoluminescence study is conducted on Ag-incorporated CZTSSe monograins and a radiative recombination model is proposed. The composition and structural quality of the monograins in dependence of the added Ag amount are characterized using Energy Dispersive X-ray Spectroscopy and X-Ray Diffraction method, respectively. The Ag-incorporated CZTSSe monograin solar cells are characterized by temperature dependent current-voltage and electron beam induced current methods. It was found, that low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.
doi_str_mv 10.1016/j.solener.2020.02.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440678121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X20301006</els_id><sourcerecordid>2440678121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-5ff133605e9ce3167a33258c5e11cd568db78eaa197493464142c6ffdd761e323</originalsourceid><addsrcrecordid>eNqFkM1qGzEQx0VJoI7TRygIcrEhu9VIu6v1KQTTtIFADk4g9CIUaTbRspYcSS5xn6DnPmKepGuce05z-H_MzI-Qr8BKYNB868sUBvQYS844KxkvGeOfyAQqCQXwWh6RCWOiLdiCP3wmJyn1jIGEVk5Iv8pbu6Oho7PLp9flFt7-_nud819-5Wer8xXOK7oOPjxF7XyiaefzMyb3By193I3KkNHTpIdM15ifg6VdiHS8RkdqcBio3mwGZ3R2wadTctzpIeGX9zkl91ff75Y_i5vbH9fLy5vCCCFzUXcdCNGwGhcGBTRSC8Hr1tQIYGzdtPZRtqg1LGS1EFVTQcVN03XWygZQcDElZ4feTQwvW0xZ9WEb_bhS8apijWyBw-iqDy4TQ0oRO7WJbq3jTgFTe6yqV-9Y1R6rYlyNWMfcxSGH4wu_3agm49AbtC6iycoG90HDfynjg_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440678121</pqid></control><display><type>article</type><title>Study of (AgxCu1−x)2ZnSn(S,Se)4 monograins synthesized by molten salt method for solar cell applications</title><source>Elsevier ScienceDirect Journals</source><creator>Oueslati, S. ; Kauk-Kuusik, M. ; Neubauer, C. ; Mikli, V. ; Meissner, D. ; Brammertz, G. ; Vermang, B. ; Krustok, J. ; Grossberg, M.</creator><creatorcontrib>Oueslati, S. ; Kauk-Kuusik, M. ; Neubauer, C. ; Mikli, V. ; Meissner, D. ; Brammertz, G. ; Vermang, B. ; Krustok, J. ; Grossberg, M.</creatorcontrib><description>•Single phase (AgxCu1−x)2ZnSn(S,Se)4 monograins were synthesized in molten flux.•Adding Ag to CZTSSe increases carrier concentration and decreases carrier lifetime.•Low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.•The Ag incorporation changed the dominant radiative recombination channel in CZTSSe.•The Ag incorporation decreased the collection width as evaluated by the EBIC study. The open circuit voltage (VOC) deficit of Cu2ZnSn(S,Se)4 (CZTSSe) kesterite solar cells is higher than that of the closely related Cu(InGa)Se2 solar cells. One of the most promising strategies to overcome the large VOC deficit of kesterite solar cells is by reducing the recombination losses through appropriate cation substitution. In fact, replacing totally or partially Zn or Cu by an element with larger covalent radius one can significantly reduce the concentration of I–II antisite defects in the bulk. In this study, an investigation of the impact of partial substitution of Cu by Ag in CZTSSe solid solution monograins is presented. A detailed photoluminescence study is conducted on Ag-incorporated CZTSSe monograins and a radiative recombination model is proposed. The composition and structural quality of the monograins in dependence of the added Ag amount are characterized using Energy Dispersive X-ray Spectroscopy and X-Ray Diffraction method, respectively. The Ag-incorporated CZTSSe monograin solar cells are characterized by temperature dependent current-voltage and electron beam induced current methods. It was found, that low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2020.02.002</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Antisite defects ; Cations substituation ; Copper ; Copper indium gallium selenides ; Copper zinc tin sulfur selenide ; Electron beam induced current ; Kesterite ; Molten salts ; Monograins ; Open circuit voltage ; Photoluminescence ; Photons ; Photovoltaic cells ; Radiative recombination ; Recombination ; Silver ; Solar cells ; Solar energy ; Solid solutions ; Substitutes ; Temperature dependence ; Voltage ; X-ray diffraction ; X-ray spectroscopy</subject><ispartof>Solar energy, 2020-03, Vol.198, p.586-595</ispartof><rights>2020 International Solar Energy Society</rights><rights>Copyright Pergamon Press Inc. Mar 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-5ff133605e9ce3167a33258c5e11cd568db78eaa197493464142c6ffdd761e323</citedby><cites>FETCH-LOGICAL-c337t-5ff133605e9ce3167a33258c5e11cd568db78eaa197493464142c6ffdd761e323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2020.02.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Oueslati, S.</creatorcontrib><creatorcontrib>Kauk-Kuusik, M.</creatorcontrib><creatorcontrib>Neubauer, C.</creatorcontrib><creatorcontrib>Mikli, V.</creatorcontrib><creatorcontrib>Meissner, D.</creatorcontrib><creatorcontrib>Brammertz, G.</creatorcontrib><creatorcontrib>Vermang, B.</creatorcontrib><creatorcontrib>Krustok, J.</creatorcontrib><creatorcontrib>Grossberg, M.</creatorcontrib><title>Study of (AgxCu1−x)2ZnSn(S,Se)4 monograins synthesized by molten salt method for solar cell applications</title><title>Solar energy</title><description>•Single phase (AgxCu1−x)2ZnSn(S,Se)4 monograins were synthesized in molten flux.•Adding Ag to CZTSSe increases carrier concentration and decreases carrier lifetime.•Low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.•The Ag incorporation changed the dominant radiative recombination channel in CZTSSe.•The Ag incorporation decreased the collection width as evaluated by the EBIC study. The open circuit voltage (VOC) deficit of Cu2ZnSn(S,Se)4 (CZTSSe) kesterite solar cells is higher than that of the closely related Cu(InGa)Se2 solar cells. One of the most promising strategies to overcome the large VOC deficit of kesterite solar cells is by reducing the recombination losses through appropriate cation substitution. In fact, replacing totally or partially Zn or Cu by an element with larger covalent radius one can significantly reduce the concentration of I–II antisite defects in the bulk. In this study, an investigation of the impact of partial substitution of Cu by Ag in CZTSSe solid solution monograins is presented. A detailed photoluminescence study is conducted on Ag-incorporated CZTSSe monograins and a radiative recombination model is proposed. The composition and structural quality of the monograins in dependence of the added Ag amount are characterized using Energy Dispersive X-ray Spectroscopy and X-Ray Diffraction method, respectively. The Ag-incorporated CZTSSe monograin solar cells are characterized by temperature dependent current-voltage and electron beam induced current methods. It was found, that low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.</description><subject>Antisite defects</subject><subject>Cations substituation</subject><subject>Copper</subject><subject>Copper indium gallium selenides</subject><subject>Copper zinc tin sulfur selenide</subject><subject>Electron beam induced current</subject><subject>Kesterite</subject><subject>Molten salts</subject><subject>Monograins</subject><subject>Open circuit voltage</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Radiative recombination</subject><subject>Recombination</subject><subject>Silver</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Solid solutions</subject><subject>Substitutes</subject><subject>Temperature dependence</subject><subject>Voltage</subject><subject>X-ray diffraction</subject><subject>X-ray spectroscopy</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1qGzEQx0VJoI7TRygIcrEhu9VIu6v1KQTTtIFADk4g9CIUaTbRspYcSS5xn6DnPmKepGuce05z-H_MzI-Qr8BKYNB868sUBvQYS844KxkvGeOfyAQqCQXwWh6RCWOiLdiCP3wmJyn1jIGEVk5Iv8pbu6Oho7PLp9flFt7-_nud819-5Wer8xXOK7oOPjxF7XyiaefzMyb3By193I3KkNHTpIdM15ifg6VdiHS8RkdqcBio3mwGZ3R2wadTctzpIeGX9zkl91ff75Y_i5vbH9fLy5vCCCFzUXcdCNGwGhcGBTRSC8Hr1tQIYGzdtPZRtqg1LGS1EFVTQcVN03XWygZQcDElZ4feTQwvW0xZ9WEb_bhS8apijWyBw-iqDy4TQ0oRO7WJbq3jTgFTe6yqV-9Y1R6rYlyNWMfcxSGH4wu_3agm49AbtC6iycoG90HDfynjg_s</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Oueslati, S.</creator><creator>Kauk-Kuusik, M.</creator><creator>Neubauer, C.</creator><creator>Mikli, V.</creator><creator>Meissner, D.</creator><creator>Brammertz, G.</creator><creator>Vermang, B.</creator><creator>Krustok, J.</creator><creator>Grossberg, M.</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200301</creationdate><title>Study of (AgxCu1−x)2ZnSn(S,Se)4 monograins synthesized by molten salt method for solar cell applications</title><author>Oueslati, S. ; Kauk-Kuusik, M. ; Neubauer, C. ; Mikli, V. ; Meissner, D. ; Brammertz, G. ; Vermang, B. ; Krustok, J. ; Grossberg, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-5ff133605e9ce3167a33258c5e11cd568db78eaa197493464142c6ffdd761e323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antisite defects</topic><topic>Cations substituation</topic><topic>Copper</topic><topic>Copper indium gallium selenides</topic><topic>Copper zinc tin sulfur selenide</topic><topic>Electron beam induced current</topic><topic>Kesterite</topic><topic>Molten salts</topic><topic>Monograins</topic><topic>Open circuit voltage</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Radiative recombination</topic><topic>Recombination</topic><topic>Silver</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Solid solutions</topic><topic>Substitutes</topic><topic>Temperature dependence</topic><topic>Voltage</topic><topic>X-ray diffraction</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oueslati, S.</creatorcontrib><creatorcontrib>Kauk-Kuusik, M.</creatorcontrib><creatorcontrib>Neubauer, C.</creatorcontrib><creatorcontrib>Mikli, V.</creatorcontrib><creatorcontrib>Meissner, D.</creatorcontrib><creatorcontrib>Brammertz, G.</creatorcontrib><creatorcontrib>Vermang, B.</creatorcontrib><creatorcontrib>Krustok, J.</creatorcontrib><creatorcontrib>Grossberg, M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oueslati, S.</au><au>Kauk-Kuusik, M.</au><au>Neubauer, C.</au><au>Mikli, V.</au><au>Meissner, D.</au><au>Brammertz, G.</au><au>Vermang, B.</au><au>Krustok, J.</au><au>Grossberg, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of (AgxCu1−x)2ZnSn(S,Se)4 monograins synthesized by molten salt method for solar cell applications</atitle><jtitle>Solar energy</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>198</volume><spage>586</spage><epage>595</epage><pages>586-595</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>•Single phase (AgxCu1−x)2ZnSn(S,Se)4 monograins were synthesized in molten flux.•Adding Ag to CZTSSe increases carrier concentration and decreases carrier lifetime.•Low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.•The Ag incorporation changed the dominant radiative recombination channel in CZTSSe.•The Ag incorporation decreased the collection width as evaluated by the EBIC study. The open circuit voltage (VOC) deficit of Cu2ZnSn(S,Se)4 (CZTSSe) kesterite solar cells is higher than that of the closely related Cu(InGa)Se2 solar cells. One of the most promising strategies to overcome the large VOC deficit of kesterite solar cells is by reducing the recombination losses through appropriate cation substitution. In fact, replacing totally or partially Zn or Cu by an element with larger covalent radius one can significantly reduce the concentration of I–II antisite defects in the bulk. In this study, an investigation of the impact of partial substitution of Cu by Ag in CZTSSe solid solution monograins is presented. A detailed photoluminescence study is conducted on Ag-incorporated CZTSSe monograins and a radiative recombination model is proposed. The composition and structural quality of the monograins in dependence of the added Ag amount are characterized using Energy Dispersive X-ray Spectroscopy and X-Ray Diffraction method, respectively. The Ag-incorporated CZTSSe monograin solar cells are characterized by temperature dependent current-voltage and electron beam induced current methods. It was found, that low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2020.02.002</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2020-03, Vol.198, p.586-595
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_2440678121
source Elsevier ScienceDirect Journals
subjects Antisite defects
Cations substituation
Copper
Copper indium gallium selenides
Copper zinc tin sulfur selenide
Electron beam induced current
Kesterite
Molten salts
Monograins
Open circuit voltage
Photoluminescence
Photons
Photovoltaic cells
Radiative recombination
Recombination
Silver
Solar cells
Solar energy
Solid solutions
Substitutes
Temperature dependence
Voltage
X-ray diffraction
X-ray spectroscopy
title Study of (AgxCu1−x)2ZnSn(S,Se)4 monograins synthesized by molten salt method for solar cell applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20(AgxCu1%E2%88%92x)2ZnSn(S,Se)4%20monograins%20synthesized%20by%20molten%20salt%20method%20for%20solar%20cell%20applications&rft.jtitle=Solar%20energy&rft.au=Oueslati,%20S.&rft.date=2020-03-01&rft.volume=198&rft.spage=586&rft.epage=595&rft.pages=586-595&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2020.02.002&rft_dat=%3Cproquest_cross%3E2440678121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440678121&rft_id=info:pmid/&rft_els_id=S0038092X20301006&rfr_iscdi=true