Polynomial inequalities on the Hamming cube
Let ( X , ‖ · ‖ X ) be a Banach space. The purpose of this article is to systematically investigate dimension independent properties of vector valued functions f : { - 1 , 1 } n → X on the Hamming cube whose spectrum is bounded above or below. Our proofs exploit contractivity properties of the heat...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2020-10, Vol.178 (1-2), p.235-287 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 287 |
---|---|
container_issue | 1-2 |
container_start_page | 235 |
container_title | Probability theory and related fields |
container_volume | 178 |
creator | Eskenazis, Alexandros Ivanisvili, Paata |
description | Let
(
X
,
‖
·
‖
X
)
be a Banach space. The purpose of this article is to systematically investigate dimension independent properties of vector valued functions
f
:
{
-
1
,
1
}
n
→
X
on the Hamming cube whose spectrum is bounded above or below. Our proofs exploit contractivity properties of the heat flow, induced by the geometry of the target space
(
X
,
‖
·
‖
X
)
, combined with duality arguments and suitable tools from approximation theory and complex analysis. We obtain a series of improvements of various well-studied estimates for functions with bounded spectrum, including moment comparison results for low degree Walsh polynomials and Bernstein–Markov type inequalities, which constitute discrete vector valued analogues of Freud’s inequality in Gauss space (1971). Many of these inequalities are new even for scalar valued functions. Furthermore, we provide a short proof of Mendel and Naor’s heat smoothing theorem (2014) for functions in tail spaces with values in spaces of nontrivial type and we also prove a dual lower bound on the decay of the heat semigroup acting on functions with spectrum bounded from above. Finally, we improve the reverse Bernstein–Markov inequalities of Meyer (in: Seminar on probability, XVIII, Lecture notes in mathematics. Springer, Berlin, 1984.
https://doi.org/10.1007/BFb0100043
) and Mendel and Naor (Publ Math Inst Hautes Études Sci 119:1–95, 2014.
https://doi.org/10.1007/s10240-013-0053-2
) for functions with narrow enough spectrum and improve the bounds of Filmus et al. (Isr J Math 214(1):167–192, 2016.
https://doi.org/10.1007/s11856-016-1355-0
) on the
ℓ
p
sums of influences of bounded functions for
p
∈
(
1
,
4
3
)
. |
doi_str_mv | 10.1007/s00440-020-00973-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440539679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440539679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f6d7f544cc413f61d5af5780b00fc7ca6978fda316f7d8c88e538ca282f8a62a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCR4lOvrNHKWqFgh70HNJsUrfsR5vsHvbfG13Bm4dhLu_zDvMgdE3gjgCo-wTAOWCgeaBUDE8naEE4o5iC5KdoAURprEGQc3SR0h4AKON0gW7f-mbq-ra2TVF3_jjaph5qn4q-K4ZPX6xt29bdrnDj1l-is2Cb5K9-9xJ9PD2-r9Z48_r8snrYYMdIOeAgKxUE585xwoIklbBBKA1bgOCUs7JUOlSWERlUpZ3WXjDtLNU0aCupZUt0M_ceYn8cfRrMvh9jl08amr8UrJSqzCk6p1zsU4o-mEOsWxsnQ8B8SzGzFJOlmB8pZsoQm6GUw93Ox7_qf6gvGg1kLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440539679</pqid></control><display><type>article</type><title>Polynomial inequalities on the Hamming cube</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Eskenazis, Alexandros ; Ivanisvili, Paata</creator><creatorcontrib>Eskenazis, Alexandros ; Ivanisvili, Paata</creatorcontrib><description>Let
(
X
,
‖
·
‖
X
)
be a Banach space. The purpose of this article is to systematically investigate dimension independent properties of vector valued functions
f
:
{
-
1
,
1
}
n
→
X
on the Hamming cube whose spectrum is bounded above or below. Our proofs exploit contractivity properties of the heat flow, induced by the geometry of the target space
(
X
,
‖
·
‖
X
)
, combined with duality arguments and suitable tools from approximation theory and complex analysis. We obtain a series of improvements of various well-studied estimates for functions with bounded spectrum, including moment comparison results for low degree Walsh polynomials and Bernstein–Markov type inequalities, which constitute discrete vector valued analogues of Freud’s inequality in Gauss space (1971). Many of these inequalities are new even for scalar valued functions. Furthermore, we provide a short proof of Mendel and Naor’s heat smoothing theorem (2014) for functions in tail spaces with values in spaces of nontrivial type and we also prove a dual lower bound on the decay of the heat semigroup acting on functions with spectrum bounded from above. Finally, we improve the reverse Bernstein–Markov inequalities of Meyer (in: Seminar on probability, XVIII, Lecture notes in mathematics. Springer, Berlin, 1984.
https://doi.org/10.1007/BFb0100043
) and Mendel and Naor (Publ Math Inst Hautes Études Sci 119:1–95, 2014.
https://doi.org/10.1007/s10240-013-0053-2
) for functions with narrow enough spectrum and improve the bounds of Filmus et al. (Isr J Math 214(1):167–192, 2016.
https://doi.org/10.1007/s11856-016-1355-0
) on the
ℓ
p
sums of influences of bounded functions for
p
∈
(
1
,
4
3
)
.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-020-00973-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Banach spaces ; Economics ; Finance ; Heat transmission ; Inequalities ; Insurance ; Lower bounds ; Management ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Polynomials ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Statistics for Business ; Theoretical</subject><ispartof>Probability theory and related fields, 2020-10, Vol.178 (1-2), p.235-287</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f6d7f544cc413f61d5af5780b00fc7ca6978fda316f7d8c88e538ca282f8a62a3</citedby><cites>FETCH-LOGICAL-c319t-f6d7f544cc413f61d5af5780b00fc7ca6978fda316f7d8c88e538ca282f8a62a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-020-00973-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-020-00973-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Eskenazis, Alexandros</creatorcontrib><creatorcontrib>Ivanisvili, Paata</creatorcontrib><title>Polynomial inequalities on the Hamming cube</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>Let
(
X
,
‖
·
‖
X
)
be a Banach space. The purpose of this article is to systematically investigate dimension independent properties of vector valued functions
f
:
{
-
1
,
1
}
n
→
X
on the Hamming cube whose spectrum is bounded above or below. Our proofs exploit contractivity properties of the heat flow, induced by the geometry of the target space
(
X
,
‖
·
‖
X
)
, combined with duality arguments and suitable tools from approximation theory and complex analysis. We obtain a series of improvements of various well-studied estimates for functions with bounded spectrum, including moment comparison results for low degree Walsh polynomials and Bernstein–Markov type inequalities, which constitute discrete vector valued analogues of Freud’s inequality in Gauss space (1971). Many of these inequalities are new even for scalar valued functions. Furthermore, we provide a short proof of Mendel and Naor’s heat smoothing theorem (2014) for functions in tail spaces with values in spaces of nontrivial type and we also prove a dual lower bound on the decay of the heat semigroup acting on functions with spectrum bounded from above. Finally, we improve the reverse Bernstein–Markov inequalities of Meyer (in: Seminar on probability, XVIII, Lecture notes in mathematics. Springer, Berlin, 1984.
https://doi.org/10.1007/BFb0100043
) and Mendel and Naor (Publ Math Inst Hautes Études Sci 119:1–95, 2014.
https://doi.org/10.1007/s10240-013-0053-2
) for functions with narrow enough spectrum and improve the bounds of Filmus et al. (Isr J Math 214(1):167–192, 2016.
https://doi.org/10.1007/s11856-016-1355-0
) on the
ℓ
p
sums of influences of bounded functions for
p
∈
(
1
,
4
3
)
.</description><subject>Banach spaces</subject><subject>Economics</subject><subject>Finance</subject><subject>Heat transmission</subject><subject>Inequalities</subject><subject>Insurance</subject><subject>Lower bounds</subject><subject>Management</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Polynomials</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Statistics for Business</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOCR4lOvrNHKWqFgh70HNJsUrfsR5vsHvbfG13Bm4dhLu_zDvMgdE3gjgCo-wTAOWCgeaBUDE8naEE4o5iC5KdoAURprEGQc3SR0h4AKON0gW7f-mbq-ra2TVF3_jjaph5qn4q-K4ZPX6xt29bdrnDj1l-is2Cb5K9-9xJ9PD2-r9Z48_r8snrYYMdIOeAgKxUE585xwoIklbBBKA1bgOCUs7JUOlSWERlUpZ3WXjDtLNU0aCupZUt0M_ceYn8cfRrMvh9jl08amr8UrJSqzCk6p1zsU4o-mEOsWxsnQ8B8SzGzFJOlmB8pZsoQm6GUw93Ox7_qf6gvGg1kLg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Eskenazis, Alexandros</creator><creator>Ivanisvili, Paata</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20201001</creationdate><title>Polynomial inequalities on the Hamming cube</title><author>Eskenazis, Alexandros ; Ivanisvili, Paata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f6d7f544cc413f61d5af5780b00fc7ca6978fda316f7d8c88e538ca282f8a62a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Banach spaces</topic><topic>Economics</topic><topic>Finance</topic><topic>Heat transmission</topic><topic>Inequalities</topic><topic>Insurance</topic><topic>Lower bounds</topic><topic>Management</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Polynomials</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Statistics for Business</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eskenazis, Alexandros</creatorcontrib><creatorcontrib>Ivanisvili, Paata</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eskenazis, Alexandros</au><au>Ivanisvili, Paata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomial inequalities on the Hamming cube</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>178</volume><issue>1-2</issue><spage>235</spage><epage>287</epage><pages>235-287</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><abstract>Let
(
X
,
‖
·
‖
X
)
be a Banach space. The purpose of this article is to systematically investigate dimension independent properties of vector valued functions
f
:
{
-
1
,
1
}
n
→
X
on the Hamming cube whose spectrum is bounded above or below. Our proofs exploit contractivity properties of the heat flow, induced by the geometry of the target space
(
X
,
‖
·
‖
X
)
, combined with duality arguments and suitable tools from approximation theory and complex analysis. We obtain a series of improvements of various well-studied estimates for functions with bounded spectrum, including moment comparison results for low degree Walsh polynomials and Bernstein–Markov type inequalities, which constitute discrete vector valued analogues of Freud’s inequality in Gauss space (1971). Many of these inequalities are new even for scalar valued functions. Furthermore, we provide a short proof of Mendel and Naor’s heat smoothing theorem (2014) for functions in tail spaces with values in spaces of nontrivial type and we also prove a dual lower bound on the decay of the heat semigroup acting on functions with spectrum bounded from above. Finally, we improve the reverse Bernstein–Markov inequalities of Meyer (in: Seminar on probability, XVIII, Lecture notes in mathematics. Springer, Berlin, 1984.
https://doi.org/10.1007/BFb0100043
) and Mendel and Naor (Publ Math Inst Hautes Études Sci 119:1–95, 2014.
https://doi.org/10.1007/s10240-013-0053-2
) for functions with narrow enough spectrum and improve the bounds of Filmus et al. (Isr J Math 214(1):167–192, 2016.
https://doi.org/10.1007/s11856-016-1355-0
) on the
ℓ
p
sums of influences of bounded functions for
p
∈
(
1
,
4
3
)
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00440-020-00973-y</doi><tpages>53</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-8051 |
ispartof | Probability theory and related fields, 2020-10, Vol.178 (1-2), p.235-287 |
issn | 0178-8051 1432-2064 |
language | eng |
recordid | cdi_proquest_journals_2440539679 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Banach spaces Economics Finance Heat transmission Inequalities Insurance Lower bounds Management Mathematical analysis Mathematical and Computational Biology Mathematical and Computational Physics Mathematics Mathematics and Statistics Operations Research/Decision Theory Polynomials Probability Probability Theory and Stochastic Processes Quantitative Finance Statistics for Business Theoretical |
title | Polynomial inequalities on the Hamming cube |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomial%20inequalities%20on%20the%20Hamming%20cube&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Eskenazis,%20Alexandros&rft.date=2020-10-01&rft.volume=178&rft.issue=1-2&rft.spage=235&rft.epage=287&rft.pages=235-287&rft.issn=0178-8051&rft.eissn=1432-2064&rft_id=info:doi/10.1007/s00440-020-00973-y&rft_dat=%3Cproquest_cross%3E2440539679%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440539679&rft_id=info:pmid/&rfr_iscdi=true |