Butterfly effect and a self-modulating El Niño response to global warming

El Niño and La Niña, collectively referred to as the El Niño–Southern Oscillation (ENSO), are not only highly consequential 1 – 6 but also strongly nonlinear 7 – 14 . For example, the maximum warm anomalies of El Niño, which occur in the equatorial eastern Pacific Ocean, are larger than the maximum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2020-09, Vol.585 (7823), p.68-73
Hauptverfasser: Cai, Wenju, Ng, Benjamin, Geng, Tao, Wu, Lixin, Santoso, Agus, McPhaden, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 7823
container_start_page 68
container_title Nature (London)
container_volume 585
creator Cai, Wenju
Ng, Benjamin
Geng, Tao
Wu, Lixin
Santoso, Agus
McPhaden, Michael J.
description El Niño and La Niña, collectively referred to as the El Niño–Southern Oscillation (ENSO), are not only highly consequential 1 – 6 but also strongly nonlinear 7 – 14 . For example, the maximum warm anomalies of El Niño, which occur in the equatorial eastern Pacific Ocean, are larger than the maximum cold anomalies of La Niña, which are centred in the equatorial central Pacific Ocean 7 – 9 . The associated atmospheric nonlinear thermal damping cools the equatorial Pacific during El Niño but warms it during La Niña 15 , 16 . Under greenhouse warming, climate models project an increase in the frequency of strong El Niño and La Niña events, but the change differs vastly across models 17 , which is partially attributed to internal variability 18 – 23 . Here we show that like a butterfly effect 24 , an infinitesimal random perturbation to identical initial conditions induces vastly different initial ENSO variability, which systematically affects its response to greenhouse warming a century later. In experiments with higher initial variability, a greater cumulative oceanic heat loss from ENSO thermal damping reduces stratification of the upper equatorial Pacific Ocean, leading to a smaller increase in ENSO variability under subsequent greenhouse warming. This self-modulating mechanism operates in two large ensembles generated using two different models, each commencing from identical initial conditions but with a butterfly perturbation 24 , 25 ; it also operates in a large ensemble generated with another model commencing from different initial conditions 25 , 26 and across climate models participating in the Coupled Model Intercomparison Project 27 , 28 . Thus, if the greenhouse-warming-induced increase in ENSO variability 29 is initially suppressed by internal variability, future ENSO variability is likely to be enhanced, and vice versa. This self-modulation linking ENSO variability across time presents a different perspective for understanding the dynamics of ENSO variability on multiple timescales in a changing climate. Modelling experiments show that the El Niño response to global warming is self-modulating and depends on its historical variability; if current variability is high, future variability will be low.
doi_str_mv 10.1038/s41586-020-2641-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440495374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440495374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-bc15692e369c04263ea4142ea52b0f6f07494e5c09a0a0c8dd45a86cea908d2e3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EoqXwACzIErPh2nEcZ4Sq_KmCBWbLSeyqVRIXOxHtY_EMvBiuUmBiusP9zjnSh9A5hSsKibwOnKZSEGBAmOCUbA7QmPJMEC5kdojGAEwSkIkYoZMQVgCQ0owfo1HCZJanwMbo6bbvOuNtvcXGWlN2WLcV1jiY2pLGVX2tu2W7wLMaPy-_Ph32JqxdGwzuHF7UrtA1_tC-icwpOrK6DuZsfyfo7W72On0g85f7x-nNnJRcio4UJU1Fzkwi8hI4E4nRnHJmdMoKsMJCxnNu0hJyDRpKWVU81VKURucgq5iboMuhd-3de29Cp1au922cVIxz4HmaZDxSdKBK70Lwxqq1XzbabxUFtbOnBnsq2lM7e2oTMxf75r5oTPWb-NEVATYAIb7ahfF_0_-3fgNY2Hq9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440495374</pqid></control><display><type>article</type><title>Butterfly effect and a self-modulating El Niño response to global warming</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cai, Wenju ; Ng, Benjamin ; Geng, Tao ; Wu, Lixin ; Santoso, Agus ; McPhaden, Michael J.</creator><creatorcontrib>Cai, Wenju ; Ng, Benjamin ; Geng, Tao ; Wu, Lixin ; Santoso, Agus ; McPhaden, Michael J.</creatorcontrib><description>El Niño and La Niña, collectively referred to as the El Niño–Southern Oscillation (ENSO), are not only highly consequential 1 – 6 but also strongly nonlinear 7 – 14 . For example, the maximum warm anomalies of El Niño, which occur in the equatorial eastern Pacific Ocean, are larger than the maximum cold anomalies of La Niña, which are centred in the equatorial central Pacific Ocean 7 – 9 . The associated atmospheric nonlinear thermal damping cools the equatorial Pacific during El Niño but warms it during La Niña 15 , 16 . Under greenhouse warming, climate models project an increase in the frequency of strong El Niño and La Niña events, but the change differs vastly across models 17 , which is partially attributed to internal variability 18 – 23 . Here we show that like a butterfly effect 24 , an infinitesimal random perturbation to identical initial conditions induces vastly different initial ENSO variability, which systematically affects its response to greenhouse warming a century later. In experiments with higher initial variability, a greater cumulative oceanic heat loss from ENSO thermal damping reduces stratification of the upper equatorial Pacific Ocean, leading to a smaller increase in ENSO variability under subsequent greenhouse warming. This self-modulating mechanism operates in two large ensembles generated using two different models, each commencing from identical initial conditions but with a butterfly perturbation 24 , 25 ; it also operates in a large ensemble generated with another model commencing from different initial conditions 25 , 26 and across climate models participating in the Coupled Model Intercomparison Project 27 , 28 . Thus, if the greenhouse-warming-induced increase in ENSO variability 29 is initially suppressed by internal variability, future ENSO variability is likely to be enhanced, and vice versa. This self-modulation linking ENSO variability across time presents a different perspective for understanding the dynamics of ENSO variability on multiple timescales in a changing climate. Modelling experiments show that the El Niño response to global warming is self-modulating and depends on its historical variability; if current variability is high, future variability will be low.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2641-x</identifier><identifier>PMID: 32879502</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/35/823 ; 704/106/694/1108 ; 704/106/694/2786 ; 704/829/2737 ; Anomalies ; Atmosphere ; Atmospheric models ; Climate change ; Climate models ; Cold ; Damping ; El Nino ; El Nino effects ; El Nino-Southern Oscillation event ; Experiments ; Global warming ; Greenhouse effect ; Heat ; Heat loss ; Humanities and Social Sciences ; Initial conditions ; La Nina ; La Nina events ; multidisciplinary ; Oceans ; Perturbation ; Science ; Science (multidisciplinary) ; Southern Oscillation ; Variability</subject><ispartof>Nature (London), 2020-09, Vol.585 (7823), p.68-73</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>Copyright Nature Publishing Group Sep 3, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-bc15692e369c04263ea4142ea52b0f6f07494e5c09a0a0c8dd45a86cea908d2e3</citedby><cites>FETCH-LOGICAL-c486t-bc15692e369c04263ea4142ea52b0f6f07494e5c09a0a0c8dd45a86cea908d2e3</cites><orcidid>0000-0002-4458-4592 ; 0000-0001-7749-8124 ; 0000-0001-6520-0829 ; 0000-0002-8423-5805 ; 0000-0002-4694-5531 ; 0000-0002-3385-7110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-2641-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-2641-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32879502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Wenju</creatorcontrib><creatorcontrib>Ng, Benjamin</creatorcontrib><creatorcontrib>Geng, Tao</creatorcontrib><creatorcontrib>Wu, Lixin</creatorcontrib><creatorcontrib>Santoso, Agus</creatorcontrib><creatorcontrib>McPhaden, Michael J.</creatorcontrib><title>Butterfly effect and a self-modulating El Niño response to global warming</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>El Niño and La Niña, collectively referred to as the El Niño–Southern Oscillation (ENSO), are not only highly consequential 1 – 6 but also strongly nonlinear 7 – 14 . For example, the maximum warm anomalies of El Niño, which occur in the equatorial eastern Pacific Ocean, are larger than the maximum cold anomalies of La Niña, which are centred in the equatorial central Pacific Ocean 7 – 9 . The associated atmospheric nonlinear thermal damping cools the equatorial Pacific during El Niño but warms it during La Niña 15 , 16 . Under greenhouse warming, climate models project an increase in the frequency of strong El Niño and La Niña events, but the change differs vastly across models 17 , which is partially attributed to internal variability 18 – 23 . Here we show that like a butterfly effect 24 , an infinitesimal random perturbation to identical initial conditions induces vastly different initial ENSO variability, which systematically affects its response to greenhouse warming a century later. In experiments with higher initial variability, a greater cumulative oceanic heat loss from ENSO thermal damping reduces stratification of the upper equatorial Pacific Ocean, leading to a smaller increase in ENSO variability under subsequent greenhouse warming. This self-modulating mechanism operates in two large ensembles generated using two different models, each commencing from identical initial conditions but with a butterfly perturbation 24 , 25 ; it also operates in a large ensemble generated with another model commencing from different initial conditions 25 , 26 and across climate models participating in the Coupled Model Intercomparison Project 27 , 28 . Thus, if the greenhouse-warming-induced increase in ENSO variability 29 is initially suppressed by internal variability, future ENSO variability is likely to be enhanced, and vice versa. This self-modulation linking ENSO variability across time presents a different perspective for understanding the dynamics of ENSO variability on multiple timescales in a changing climate. Modelling experiments show that the El Niño response to global warming is self-modulating and depends on its historical variability; if current variability is high, future variability will be low.</description><subject>704/106/35/823</subject><subject>704/106/694/1108</subject><subject>704/106/694/2786</subject><subject>704/829/2737</subject><subject>Anomalies</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Cold</subject><subject>Damping</subject><subject>El Nino</subject><subject>El Nino effects</subject><subject>El Nino-Southern Oscillation event</subject><subject>Experiments</subject><subject>Global warming</subject><subject>Greenhouse effect</subject><subject>Heat</subject><subject>Heat loss</subject><subject>Humanities and Social Sciences</subject><subject>Initial conditions</subject><subject>La Nina</subject><subject>La Nina events</subject><subject>multidisciplinary</subject><subject>Oceans</subject><subject>Perturbation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Southern Oscillation</subject><subject>Variability</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kL1OwzAUhS0EoqXwACzIErPh2nEcZ4Sq_KmCBWbLSeyqVRIXOxHtY_EMvBiuUmBiusP9zjnSh9A5hSsKibwOnKZSEGBAmOCUbA7QmPJMEC5kdojGAEwSkIkYoZMQVgCQ0owfo1HCZJanwMbo6bbvOuNtvcXGWlN2WLcV1jiY2pLGVX2tu2W7wLMaPy-_Ph32JqxdGwzuHF7UrtA1_tC-icwpOrK6DuZsfyfo7W72On0g85f7x-nNnJRcio4UJU1Fzkwi8hI4E4nRnHJmdMoKsMJCxnNu0hJyDRpKWVU81VKURucgq5iboMuhd-3de29Cp1au922cVIxz4HmaZDxSdKBK70Lwxqq1XzbabxUFtbOnBnsq2lM7e2oTMxf75r5oTPWb-NEVATYAIb7ahfF_0_-3fgNY2Hq9</recordid><startdate>20200903</startdate><enddate>20200903</enddate><creator>Cai, Wenju</creator><creator>Ng, Benjamin</creator><creator>Geng, Tao</creator><creator>Wu, Lixin</creator><creator>Santoso, Agus</creator><creator>McPhaden, Michael J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4458-4592</orcidid><orcidid>https://orcid.org/0000-0001-7749-8124</orcidid><orcidid>https://orcid.org/0000-0001-6520-0829</orcidid><orcidid>https://orcid.org/0000-0002-8423-5805</orcidid><orcidid>https://orcid.org/0000-0002-4694-5531</orcidid><orcidid>https://orcid.org/0000-0002-3385-7110</orcidid></search><sort><creationdate>20200903</creationdate><title>Butterfly effect and a self-modulating El Niño response to global warming</title><author>Cai, Wenju ; Ng, Benjamin ; Geng, Tao ; Wu, Lixin ; Santoso, Agus ; McPhaden, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-bc15692e369c04263ea4142ea52b0f6f07494e5c09a0a0c8dd45a86cea908d2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>704/106/35/823</topic><topic>704/106/694/1108</topic><topic>704/106/694/2786</topic><topic>704/829/2737</topic><topic>Anomalies</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Cold</topic><topic>Damping</topic><topic>El Nino</topic><topic>El Nino effects</topic><topic>El Nino-Southern Oscillation event</topic><topic>Experiments</topic><topic>Global warming</topic><topic>Greenhouse effect</topic><topic>Heat</topic><topic>Heat loss</topic><topic>Humanities and Social Sciences</topic><topic>Initial conditions</topic><topic>La Nina</topic><topic>La Nina events</topic><topic>multidisciplinary</topic><topic>Oceans</topic><topic>Perturbation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Southern Oscillation</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Wenju</creatorcontrib><creatorcontrib>Ng, Benjamin</creatorcontrib><creatorcontrib>Geng, Tao</creatorcontrib><creatorcontrib>Wu, Lixin</creatorcontrib><creatorcontrib>Santoso, Agus</creatorcontrib><creatorcontrib>McPhaden, Michael J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Wenju</au><au>Ng, Benjamin</au><au>Geng, Tao</au><au>Wu, Lixin</au><au>Santoso, Agus</au><au>McPhaden, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Butterfly effect and a self-modulating El Niño response to global warming</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-09-03</date><risdate>2020</risdate><volume>585</volume><issue>7823</issue><spage>68</spage><epage>73</epage><pages>68-73</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>El Niño and La Niña, collectively referred to as the El Niño–Southern Oscillation (ENSO), are not only highly consequential 1 – 6 but also strongly nonlinear 7 – 14 . For example, the maximum warm anomalies of El Niño, which occur in the equatorial eastern Pacific Ocean, are larger than the maximum cold anomalies of La Niña, which are centred in the equatorial central Pacific Ocean 7 – 9 . The associated atmospheric nonlinear thermal damping cools the equatorial Pacific during El Niño but warms it during La Niña 15 , 16 . Under greenhouse warming, climate models project an increase in the frequency of strong El Niño and La Niña events, but the change differs vastly across models 17 , which is partially attributed to internal variability 18 – 23 . Here we show that like a butterfly effect 24 , an infinitesimal random perturbation to identical initial conditions induces vastly different initial ENSO variability, which systematically affects its response to greenhouse warming a century later. In experiments with higher initial variability, a greater cumulative oceanic heat loss from ENSO thermal damping reduces stratification of the upper equatorial Pacific Ocean, leading to a smaller increase in ENSO variability under subsequent greenhouse warming. This self-modulating mechanism operates in two large ensembles generated using two different models, each commencing from identical initial conditions but with a butterfly perturbation 24 , 25 ; it also operates in a large ensemble generated with another model commencing from different initial conditions 25 , 26 and across climate models participating in the Coupled Model Intercomparison Project 27 , 28 . Thus, if the greenhouse-warming-induced increase in ENSO variability 29 is initially suppressed by internal variability, future ENSO variability is likely to be enhanced, and vice versa. This self-modulation linking ENSO variability across time presents a different perspective for understanding the dynamics of ENSO variability on multiple timescales in a changing climate. Modelling experiments show that the El Niño response to global warming is self-modulating and depends on its historical variability; if current variability is high, future variability will be low.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32879502</pmid><doi>10.1038/s41586-020-2641-x</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4458-4592</orcidid><orcidid>https://orcid.org/0000-0001-7749-8124</orcidid><orcidid>https://orcid.org/0000-0001-6520-0829</orcidid><orcidid>https://orcid.org/0000-0002-8423-5805</orcidid><orcidid>https://orcid.org/0000-0002-4694-5531</orcidid><orcidid>https://orcid.org/0000-0002-3385-7110</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2020-09, Vol.585 (7823), p.68-73
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_journals_2440495374
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 704/106/35/823
704/106/694/1108
704/106/694/2786
704/829/2737
Anomalies
Atmosphere
Atmospheric models
Climate change
Climate models
Cold
Damping
El Nino
El Nino effects
El Nino-Southern Oscillation event
Experiments
Global warming
Greenhouse effect
Heat
Heat loss
Humanities and Social Sciences
Initial conditions
La Nina
La Nina events
multidisciplinary
Oceans
Perturbation
Science
Science (multidisciplinary)
Southern Oscillation
Variability
title Butterfly effect and a self-modulating El Niño response to global warming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Butterfly%20effect%20and%20a%20self-modulating%20El%20Ni%C3%B1o%20response%20to%20global%20warming&rft.jtitle=Nature%20(London)&rft.au=Cai,%20Wenju&rft.date=2020-09-03&rft.volume=585&rft.issue=7823&rft.spage=68&rft.epage=73&rft.pages=68-73&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2641-x&rft_dat=%3Cproquest_cross%3E2440495374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440495374&rft_id=info:pmid/32879502&rfr_iscdi=true