On the factorability of polynomial identities of upper block triangular matrix algebras graded by cyclic groups

Let F be an algebraically closed field of characteristic zero and G be an arbitrary finite cyclic group. In this paper, given an m-tuple (A1,…,Am) of finite dimensional G-simple algebras, we focus on the study of the factorability of the TG-ideals IdG((UT(A1,…,Am),α˜)) of the G-graded upper block tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2020-09, Vol.601, p.311-337
Hauptverfasser: Di Vincenzo, Onofrio Mario, Pinto, Marcos Antônio da Silva, da Silva, Viviane Ribeiro Tomaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 337
container_issue
container_start_page 311
container_title Linear algebra and its applications
container_volume 601
creator Di Vincenzo, Onofrio Mario
Pinto, Marcos Antônio da Silva
da Silva, Viviane Ribeiro Tomaz
description Let F be an algebraically closed field of characteristic zero and G be an arbitrary finite cyclic group. In this paper, given an m-tuple (A1,…,Am) of finite dimensional G-simple algebras, we focus on the study of the factorability of the TG-ideals IdG((UT(A1,…,Am),α˜)) of the G-graded upper block triangular matrix algebras UT(A1,…,Am) endowed with elementary G-gradings induced by some maps α˜. When G is a cyclic p-group we prove that the factorability of the ideal IdG((UT(A1,…,Am),α˜) is equivalent to the G-regularity of all (except for at most one) the G-simple components A1,…,Am, as well to the existence of a unique isomorphism class of α˜-admissible elementary G-gradings for UT(A1,…,Am). Moreover, we present some necessary and sufficient conditions to the factorability of IdG((UT(A1,A2),α˜)), even in case G is not a p-group, with some stronger assumptions on the gradings of the algebras A1 and A2.
doi_str_mv 10.1016/j.laa.2020.05.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440492526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379520302391</els_id><sourcerecordid>2440492526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-e10737cc707171729888a1b49edbc5ac7bb34fd01bc0e68f2bd6499095e98dcb3</originalsourceid><addsrcrecordid>eNp9kE1rHDEMhk1JoJs0PyA3Q84zlT3f5FSWNC0s7KU9G39oNp56x1PbEzr_vl6256KDkPS-kngIeWRQMmDt56l0UpYcOJTQlAD9B7JjfVcVrG_aG7ID4HVRdUPzkdzFOAFA3QHfEX-caXpDOkqdfJDKOps26ke6eLfN_mylo9bgnGyyGC-DdVkwUOW8_kVTsHI-rU4Gepa5-EOlO6EKMtJTkAYNVRvVm3ZW54Zfl_iJ3I7SRXz4l-_Jz68vP_bfisPx9fv-y6HQFW9SgQy6qtO6g47l4EPf95KpekCjdCN1p1RVjwaY0oBtP3Jl2noYYGhw6I1W1T15uu5dgv-9Ykxi8muY80nB6xrqgTe8zSp2VengYww4iiXYswybYCAuXMUkMldx4SqgEZlr9jxfPZjff7cYRNQWZ43GBtRJGG__4_4LS8uCBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440492526</pqid></control><display><type>article</type><title>On the factorability of polynomial identities of upper block triangular matrix algebras graded by cyclic groups</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Di Vincenzo, Onofrio Mario ; Pinto, Marcos Antônio da Silva ; da Silva, Viviane Ribeiro Tomaz</creator><creatorcontrib>Di Vincenzo, Onofrio Mario ; Pinto, Marcos Antônio da Silva ; da Silva, Viviane Ribeiro Tomaz</creatorcontrib><description>Let F be an algebraically closed field of characteristic zero and G be an arbitrary finite cyclic group. In this paper, given an m-tuple (A1,…,Am) of finite dimensional G-simple algebras, we focus on the study of the factorability of the TG-ideals IdG((UT(A1,…,Am),α˜)) of the G-graded upper block triangular matrix algebras UT(A1,…,Am) endowed with elementary G-gradings induced by some maps α˜. When G is a cyclic p-group we prove that the factorability of the ideal IdG((UT(A1,…,Am),α˜) is equivalent to the G-regularity of all (except for at most one) the G-simple components A1,…,Am, as well to the existence of a unique isomorphism class of α˜-admissible elementary G-gradings for UT(A1,…,Am). Moreover, we present some necessary and sufficient conditions to the factorability of IdG((UT(A1,A2),α˜)), even in case G is not a p-group, with some stronger assumptions on the gradings of the algebras A1 and A2.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.05.008</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algebra ; Factorability ; G-regularity ; Graded algebras ; Graded polynomial identities ; Invariance subgroups ; Isomorphism ; Linear algebra ; Polynomials</subject><ispartof>Linear algebra and its applications, 2020-09, Vol.601, p.311-337</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Sep 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-e10737cc707171729888a1b49edbc5ac7bb34fd01bc0e68f2bd6499095e98dcb3</citedby><cites>FETCH-LOGICAL-c325t-e10737cc707171729888a1b49edbc5ac7bb34fd01bc0e68f2bd6499095e98dcb3</cites><orcidid>0000-0003-2543-2515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2020.05.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Di Vincenzo, Onofrio Mario</creatorcontrib><creatorcontrib>Pinto, Marcos Antônio da Silva</creatorcontrib><creatorcontrib>da Silva, Viviane Ribeiro Tomaz</creatorcontrib><title>On the factorability of polynomial identities of upper block triangular matrix algebras graded by cyclic groups</title><title>Linear algebra and its applications</title><description>Let F be an algebraically closed field of characteristic zero and G be an arbitrary finite cyclic group. In this paper, given an m-tuple (A1,…,Am) of finite dimensional G-simple algebras, we focus on the study of the factorability of the TG-ideals IdG((UT(A1,…,Am),α˜)) of the G-graded upper block triangular matrix algebras UT(A1,…,Am) endowed with elementary G-gradings induced by some maps α˜. When G is a cyclic p-group we prove that the factorability of the ideal IdG((UT(A1,…,Am),α˜) is equivalent to the G-regularity of all (except for at most one) the G-simple components A1,…,Am, as well to the existence of a unique isomorphism class of α˜-admissible elementary G-gradings for UT(A1,…,Am). Moreover, we present some necessary and sufficient conditions to the factorability of IdG((UT(A1,A2),α˜)), even in case G is not a p-group, with some stronger assumptions on the gradings of the algebras A1 and A2.</description><subject>Algebra</subject><subject>Factorability</subject><subject>G-regularity</subject><subject>Graded algebras</subject><subject>Graded polynomial identities</subject><subject>Invariance subgroups</subject><subject>Isomorphism</subject><subject>Linear algebra</subject><subject>Polynomials</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rHDEMhk1JoJs0PyA3Q84zlT3f5FSWNC0s7KU9G39oNp56x1PbEzr_vl6256KDkPS-kngIeWRQMmDt56l0UpYcOJTQlAD9B7JjfVcVrG_aG7ID4HVRdUPzkdzFOAFA3QHfEX-caXpDOkqdfJDKOps26ke6eLfN_mylo9bgnGyyGC-DdVkwUOW8_kVTsHI-rU4Gepa5-EOlO6EKMtJTkAYNVRvVm3ZW54Zfl_iJ3I7SRXz4l-_Jz68vP_bfisPx9fv-y6HQFW9SgQy6qtO6g47l4EPf95KpekCjdCN1p1RVjwaY0oBtP3Jl2noYYGhw6I1W1T15uu5dgv-9Ykxi8muY80nB6xrqgTe8zSp2VengYww4iiXYswybYCAuXMUkMldx4SqgEZlr9jxfPZjff7cYRNQWZ43GBtRJGG__4_4LS8uCBQ</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Di Vincenzo, Onofrio Mario</creator><creator>Pinto, Marcos Antônio da Silva</creator><creator>da Silva, Viviane Ribeiro Tomaz</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2543-2515</orcidid></search><sort><creationdate>20200915</creationdate><title>On the factorability of polynomial identities of upper block triangular matrix algebras graded by cyclic groups</title><author>Di Vincenzo, Onofrio Mario ; Pinto, Marcos Antônio da Silva ; da Silva, Viviane Ribeiro Tomaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-e10737cc707171729888a1b49edbc5ac7bb34fd01bc0e68f2bd6499095e98dcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Factorability</topic><topic>G-regularity</topic><topic>Graded algebras</topic><topic>Graded polynomial identities</topic><topic>Invariance subgroups</topic><topic>Isomorphism</topic><topic>Linear algebra</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Vincenzo, Onofrio Mario</creatorcontrib><creatorcontrib>Pinto, Marcos Antônio da Silva</creatorcontrib><creatorcontrib>da Silva, Viviane Ribeiro Tomaz</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Vincenzo, Onofrio Mario</au><au>Pinto, Marcos Antônio da Silva</au><au>da Silva, Viviane Ribeiro Tomaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the factorability of polynomial identities of upper block triangular matrix algebras graded by cyclic groups</atitle><jtitle>Linear algebra and its applications</jtitle><date>2020-09-15</date><risdate>2020</risdate><volume>601</volume><spage>311</spage><epage>337</epage><pages>311-337</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Let F be an algebraically closed field of characteristic zero and G be an arbitrary finite cyclic group. In this paper, given an m-tuple (A1,…,Am) of finite dimensional G-simple algebras, we focus on the study of the factorability of the TG-ideals IdG((UT(A1,…,Am),α˜)) of the G-graded upper block triangular matrix algebras UT(A1,…,Am) endowed with elementary G-gradings induced by some maps α˜. When G is a cyclic p-group we prove that the factorability of the ideal IdG((UT(A1,…,Am),α˜) is equivalent to the G-regularity of all (except for at most one) the G-simple components A1,…,Am, as well to the existence of a unique isomorphism class of α˜-admissible elementary G-gradings for UT(A1,…,Am). Moreover, we present some necessary and sufficient conditions to the factorability of IdG((UT(A1,A2),α˜)), even in case G is not a p-group, with some stronger assumptions on the gradings of the algebras A1 and A2.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.05.008</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-2543-2515</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2020-09, Vol.601, p.311-337
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2440492526
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Algebra
Factorability
G-regularity
Graded algebras
Graded polynomial identities
Invariance subgroups
Isomorphism
Linear algebra
Polynomials
title On the factorability of polynomial identities of upper block triangular matrix algebras graded by cyclic groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A41%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20factorability%20of%20polynomial%20identities%20of%20upper%20block%20triangular%20matrix%20algebras%20graded%20by%20cyclic%20groups&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Di%20Vincenzo,%20Onofrio%20Mario&rft.date=2020-09-15&rft.volume=601&rft.spage=311&rft.epage=337&rft.pages=311-337&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.05.008&rft_dat=%3Cproquest_cross%3E2440492526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440492526&rft_id=info:pmid/&rft_els_id=S0024379520302391&rfr_iscdi=true