Data-driven, structure-based hyperelastic manifolds: A macro-micro-macro approach to reverse-engineer the chain behavior and perform efficient simulations of polymers

•Microstructural behavior is reverse-engineered from a single test curve.•Model characterized solving a linear system of equations.•No material parameters, no predefined functions.•Preintegrated macroscopic constitutive manifolds retain same efficiency as phenomenological models.•Biaxial tests on ru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & structures 2020-04, Vol.231, p.106209, Article 106209
Hauptverfasser: Amores, Víctor Jesús, Benítez, José María, Montáns, Francisco Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106209
container_title Computers & structures
container_volume 231
creator Amores, Víctor Jesús
Benítez, José María
Montáns, Francisco Javier
description •Microstructural behavior is reverse-engineered from a single test curve.•Model characterized solving a linear system of equations.•No material parameters, no predefined functions.•Preintegrated macroscopic constitutive manifolds retain same efficiency as phenomenological models.•Biaxial tests on rubber and silicone are predicted to good accuracy. In this paper we introduce a novel approach to obtain the stored energy density of rubber-like materials directly from experimental data. The model is structure-based, in which the only assumption is the existence of an isotropic distribution of fibres, chains or networks. Using a single macroscopic test, we reverse-engineer the response of the constituents by solving a linear system of equations. This response includes all possible interactions, without an assumption on the nature of that behavior. With the computed microstructural behavior, we build constitutive manifolds capable of reproducing accurately the behavior of the continuum under any arbitrary loading condition. To demonstrate the goodness of the proposed non-parametric macro-micro-macro approach, using just one test curve to reverse-engineer the micromechanical behavior, we reproduce, to very good accuracy, the series of biaxial tests from Kawabata et al. on vulcanized rubber 8phr sulfur. We show similar results for the Treloar material and for the Kawamura et al. series of experiments on two silicone materials. With the use of pre-integrated macroscopic constitutive manifolds generated from the microscopic behavior, the method has similar efficiency in finite element programs to that of analytical models.
doi_str_mv 10.1016/j.compstruc.2020.106209
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440492469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794920300122</els_id><sourcerecordid>2440492469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-f925b1f53ed2c6420dc18873367d0c11a4cea1e2438a4e043f30e148f01eaf443</originalsourceid><addsrcrecordid>eNqFkc2uFCEQhYnRxPHqM0jiVsaCZvrH3eT6m9zEja4JA4XNpBtaoCeZF_I5pe8Yt26AIqe-yqlDyGsOew68fXfemzgvuaTV7AWI7bcVMDwhO953AxNCNk_JDkAeWDfI4Tl5kfMZAFoJsCO_P-iimU3-guEtfaSUNSE76YyWjtcFE046F2_orIN3cbL5PT3WwqTIZv94bm-qlyVFbUZaIk14wZSRYfjpA2KiZURqRu0DPeGoLz4mqoOlle5imik6543HUGj28zrp4mPINDq6xOk6V9RL8szpKeOrv_cd-fHp4_f7L-zh2-ev98cHZpqhK8wN4nDi7tCgFaaVAqzhfd81TdtZMJxraVBzrCvptUSQjWsAuewdcNROyuaOvLlxq5dfK-aiznFNoY5UQkqQg5DtUFXdTVV955zQqSX5Waer4qC2UNRZ_QtFbaGoWyi183jrxGri4jGpvPk2aH1CU5SN_r-MP4alnic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440492469</pqid></control><display><type>article</type><title>Data-driven, structure-based hyperelastic manifolds: A macro-micro-macro approach to reverse-engineer the chain behavior and perform efficient simulations of polymers</title><source>Elsevier ScienceDirect Journals</source><creator>Amores, Víctor Jesús ; Benítez, José María ; Montáns, Francisco Javier</creator><creatorcontrib>Amores, Víctor Jesús ; Benítez, José María ; Montáns, Francisco Javier</creatorcontrib><description>•Microstructural behavior is reverse-engineered from a single test curve.•Model characterized solving a linear system of equations.•No material parameters, no predefined functions.•Preintegrated macroscopic constitutive manifolds retain same efficiency as phenomenological models.•Biaxial tests on rubber and silicone are predicted to good accuracy. In this paper we introduce a novel approach to obtain the stored energy density of rubber-like materials directly from experimental data. The model is structure-based, in which the only assumption is the existence of an isotropic distribution of fibres, chains or networks. Using a single macroscopic test, we reverse-engineer the response of the constituents by solving a linear system of equations. This response includes all possible interactions, without an assumption on the nature of that behavior. With the computed microstructural behavior, we build constitutive manifolds capable of reproducing accurately the behavior of the continuum under any arbitrary loading condition. To demonstrate the goodness of the proposed non-parametric macro-micro-macro approach, using just one test curve to reverse-engineer the micromechanical behavior, we reproduce, to very good accuracy, the series of biaxial tests from Kawabata et al. on vulcanized rubber 8phr sulfur. We show similar results for the Treloar material and for the Kawamura et al. series of experiments on two silicone materials. With the use of pre-integrated macroscopic constitutive manifolds generated from the microscopic behavior, the method has similar efficiency in finite element programs to that of analytical models.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2020.106209</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Biaxial tests ; Computer simulation ; Constitutive manifolds ; Data-driven modeling ; Engineers ; Flux density ; Hyperelasticity ; Internal energy ; Macro-micro-macro approach ; Manifolds ; Mathematical models ; Rubber ; Rubber-like materials</subject><ispartof>Computers &amp; structures, 2020-04, Vol.231, p.106209, Article 106209</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-f925b1f53ed2c6420dc18873367d0c11a4cea1e2438a4e043f30e148f01eaf443</citedby><cites>FETCH-LOGICAL-c397t-f925b1f53ed2c6420dc18873367d0c11a4cea1e2438a4e043f30e148f01eaf443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruc.2020.106209$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Amores, Víctor Jesús</creatorcontrib><creatorcontrib>Benítez, José María</creatorcontrib><creatorcontrib>Montáns, Francisco Javier</creatorcontrib><title>Data-driven, structure-based hyperelastic manifolds: A macro-micro-macro approach to reverse-engineer the chain behavior and perform efficient simulations of polymers</title><title>Computers &amp; structures</title><description>•Microstructural behavior is reverse-engineered from a single test curve.•Model characterized solving a linear system of equations.•No material parameters, no predefined functions.•Preintegrated macroscopic constitutive manifolds retain same efficiency as phenomenological models.•Biaxial tests on rubber and silicone are predicted to good accuracy. In this paper we introduce a novel approach to obtain the stored energy density of rubber-like materials directly from experimental data. The model is structure-based, in which the only assumption is the existence of an isotropic distribution of fibres, chains or networks. Using a single macroscopic test, we reverse-engineer the response of the constituents by solving a linear system of equations. This response includes all possible interactions, without an assumption on the nature of that behavior. With the computed microstructural behavior, we build constitutive manifolds capable of reproducing accurately the behavior of the continuum under any arbitrary loading condition. To demonstrate the goodness of the proposed non-parametric macro-micro-macro approach, using just one test curve to reverse-engineer the micromechanical behavior, we reproduce, to very good accuracy, the series of biaxial tests from Kawabata et al. on vulcanized rubber 8phr sulfur. We show similar results for the Treloar material and for the Kawamura et al. series of experiments on two silicone materials. With the use of pre-integrated macroscopic constitutive manifolds generated from the microscopic behavior, the method has similar efficiency in finite element programs to that of analytical models.</description><subject>Biaxial tests</subject><subject>Computer simulation</subject><subject>Constitutive manifolds</subject><subject>Data-driven modeling</subject><subject>Engineers</subject><subject>Flux density</subject><subject>Hyperelasticity</subject><subject>Internal energy</subject><subject>Macro-micro-macro approach</subject><subject>Manifolds</subject><subject>Mathematical models</subject><subject>Rubber</subject><subject>Rubber-like materials</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc2uFCEQhYnRxPHqM0jiVsaCZvrH3eT6m9zEja4JA4XNpBtaoCeZF_I5pe8Yt26AIqe-yqlDyGsOew68fXfemzgvuaTV7AWI7bcVMDwhO953AxNCNk_JDkAeWDfI4Tl5kfMZAFoJsCO_P-iimU3-guEtfaSUNSE76YyWjtcFE046F2_orIN3cbL5PT3WwqTIZv94bm-qlyVFbUZaIk14wZSRYfjpA2KiZURqRu0DPeGoLz4mqoOlle5imik6543HUGj28zrp4mPINDq6xOk6V9RL8szpKeOrv_cd-fHp4_f7L-zh2-ev98cHZpqhK8wN4nDi7tCgFaaVAqzhfd81TdtZMJxraVBzrCvptUSQjWsAuewdcNROyuaOvLlxq5dfK-aiznFNoY5UQkqQg5DtUFXdTVV955zQqSX5Waer4qC2UNRZ_QtFbaGoWyi183jrxGri4jGpvPk2aH1CU5SN_r-MP4alnic</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Amores, Víctor Jesús</creator><creator>Benítez, José María</creator><creator>Montáns, Francisco Javier</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200415</creationdate><title>Data-driven, structure-based hyperelastic manifolds: A macro-micro-macro approach to reverse-engineer the chain behavior and perform efficient simulations of polymers</title><author>Amores, Víctor Jesús ; Benítez, José María ; Montáns, Francisco Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-f925b1f53ed2c6420dc18873367d0c11a4cea1e2438a4e043f30e148f01eaf443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biaxial tests</topic><topic>Computer simulation</topic><topic>Constitutive manifolds</topic><topic>Data-driven modeling</topic><topic>Engineers</topic><topic>Flux density</topic><topic>Hyperelasticity</topic><topic>Internal energy</topic><topic>Macro-micro-macro approach</topic><topic>Manifolds</topic><topic>Mathematical models</topic><topic>Rubber</topic><topic>Rubber-like materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amores, Víctor Jesús</creatorcontrib><creatorcontrib>Benítez, José María</creatorcontrib><creatorcontrib>Montáns, Francisco Javier</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amores, Víctor Jesús</au><au>Benítez, José María</au><au>Montáns, Francisco Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven, structure-based hyperelastic manifolds: A macro-micro-macro approach to reverse-engineer the chain behavior and perform efficient simulations of polymers</atitle><jtitle>Computers &amp; structures</jtitle><date>2020-04-15</date><risdate>2020</risdate><volume>231</volume><spage>106209</spage><pages>106209-</pages><artnum>106209</artnum><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>•Microstructural behavior is reverse-engineered from a single test curve.•Model characterized solving a linear system of equations.•No material parameters, no predefined functions.•Preintegrated macroscopic constitutive manifolds retain same efficiency as phenomenological models.•Biaxial tests on rubber and silicone are predicted to good accuracy. In this paper we introduce a novel approach to obtain the stored energy density of rubber-like materials directly from experimental data. The model is structure-based, in which the only assumption is the existence of an isotropic distribution of fibres, chains or networks. Using a single macroscopic test, we reverse-engineer the response of the constituents by solving a linear system of equations. This response includes all possible interactions, without an assumption on the nature of that behavior. With the computed microstructural behavior, we build constitutive manifolds capable of reproducing accurately the behavior of the continuum under any arbitrary loading condition. To demonstrate the goodness of the proposed non-parametric macro-micro-macro approach, using just one test curve to reverse-engineer the micromechanical behavior, we reproduce, to very good accuracy, the series of biaxial tests from Kawabata et al. on vulcanized rubber 8phr sulfur. We show similar results for the Treloar material and for the Kawamura et al. series of experiments on two silicone materials. With the use of pre-integrated macroscopic constitutive manifolds generated from the microscopic behavior, the method has similar efficiency in finite element programs to that of analytical models.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2020.106209</doi></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2020-04, Vol.231, p.106209, Article 106209
issn 0045-7949
1879-2243
language eng
recordid cdi_proquest_journals_2440492469
source Elsevier ScienceDirect Journals
subjects Biaxial tests
Computer simulation
Constitutive manifolds
Data-driven modeling
Engineers
Flux density
Hyperelasticity
Internal energy
Macro-micro-macro approach
Manifolds
Mathematical models
Rubber
Rubber-like materials
title Data-driven, structure-based hyperelastic manifolds: A macro-micro-macro approach to reverse-engineer the chain behavior and perform efficient simulations of polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven,%20structure-based%20hyperelastic%20manifolds:%20A%20macro-micro-macro%20approach%20to%20reverse-engineer%20the%20chain%20behavior%20and%20perform%20efficient%20simulations%20of%20polymers&rft.jtitle=Computers%20&%20structures&rft.au=Amores,%20V%C3%ADctor%20Jes%C3%BAs&rft.date=2020-04-15&rft.volume=231&rft.spage=106209&rft.pages=106209-&rft.artnum=106209&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2020.106209&rft_dat=%3Cproquest_cross%3E2440492469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440492469&rft_id=info:pmid/&rft_els_id=S0045794920300122&rfr_iscdi=true