Collapse capacity of modular steel buildings subject to module loss scenarios: The role of inter-module connections

•Resisting capacity of corner-supported modular steel buildings.•Different module loss scenarios through instantaneous removal of different modules.•Nonlinear dynamic responses in the context of alternate path method analysis.•Collapse mechanisms and failure modes through nonlinear static pushdown a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering structures 2020-05, Vol.210, p.110373, Article 110373
Hauptverfasser: Alembagheri, M., Sharafi, P., Hajirezaei, R., Samali, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110373
container_title Engineering structures
container_volume 210
creator Alembagheri, M.
Sharafi, P.
Hajirezaei, R.
Samali, B.
description •Resisting capacity of corner-supported modular steel buildings.•Different module loss scenarios through instantaneous removal of different modules.•Nonlinear dynamic responses in the context of alternate path method analysis.•Collapse mechanisms and failure modes through nonlinear static pushdown analysis. In modular buildings made of volumetric units, robust structural action may be established by considering various scenarios for localisation of damage, corresponding to loss of supports at the ground floor, such as notional removal of ground floor modules. This paper studies the role of inter-module connections in resisting capacity of modular steel buildings against gravity-induced progressive collapse scenarios, through removing individual or combinations of entire modules at the ground floor. For this purpose, some typical modular buildings are modelled using the macro-model based finite element method. In order to investigate the role of inter-modular connections solely and separate from the effects of other elements, the modules are assumed volumetric rigid bodies, connected through horizontal and vertical interconnections, which are modelled employing translational axial and shear nonlinear springs. Different module loss scenarios are instantaneously imposed to the building models, and their nonlinear dynamic response is monitored in the context of alternate path method analysis. Then the ultimate collapse capacity of the modular buildings along with the collapse mechanism and failure modes are determined through the nonlinear static pushdown analysis. It is shown that the modular buildings possess considerable collapse resisting capacity and are able to offer high level of robustness compared to their conventional counterparts.
doi_str_mv 10.1016/j.engstruct.2020.110373
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440492399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029619329645</els_id><sourcerecordid>2440492399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-5f6cfb1a743dc8f6acd280c1351fc8fd8327af6aa2a92b750889a1329566f8573</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI3YIlzih9J7HCrKl5SJS7lbDnOBhyldrEdpP49Rqm4clrt7MysZhC6pWRFCa3vhxW4j5jCZNKKEZZRSrjgZ2hBpeCF4IyfowWhJS0Ia-pLdBXjQAhhUpIFihs_jvoQARt90MamI_Y93vtuGnXAMQGMuJ3s2Nn8BMepHcAknPxMATz6mGEDTgfr4wPefQIOPh-yi3UJQnEiGu9cllrv4jW66PUY4eY0l-j96XG3eSm2b8-vm_W2MLzkqaj62vQt1aLknZF9rU3HJDGUV7TPeyc5EzrDmumGtaIiUjaactZUdd3LSvAlupt9D8F_TRCTGvwUXH6pWFmSsmG8aTJLzCwTcpYAvToEu9fhqChRvw2rQf01rH4bVnPDWbmelZBDfFsIKhoLzkBnQ46qOm__9fgBrvqK5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440492399</pqid></control><display><type>article</type><title>Collapse capacity of modular steel buildings subject to module loss scenarios: The role of inter-module connections</title><source>Access via ScienceDirect (Elsevier)</source><creator>Alembagheri, M. ; Sharafi, P. ; Hajirezaei, R. ; Samali, B.</creator><creatorcontrib>Alembagheri, M. ; Sharafi, P. ; Hajirezaei, R. ; Samali, B.</creatorcontrib><description>•Resisting capacity of corner-supported modular steel buildings.•Different module loss scenarios through instantaneous removal of different modules.•Nonlinear dynamic responses in the context of alternate path method analysis.•Collapse mechanisms and failure modes through nonlinear static pushdown analysis. In modular buildings made of volumetric units, robust structural action may be established by considering various scenarios for localisation of damage, corresponding to loss of supports at the ground floor, such as notional removal of ground floor modules. This paper studies the role of inter-module connections in resisting capacity of modular steel buildings against gravity-induced progressive collapse scenarios, through removing individual or combinations of entire modules at the ground floor. For this purpose, some typical modular buildings are modelled using the macro-model based finite element method. In order to investigate the role of inter-modular connections solely and separate from the effects of other elements, the modules are assumed volumetric rigid bodies, connected through horizontal and vertical interconnections, which are modelled employing translational axial and shear nonlinear springs. Different module loss scenarios are instantaneously imposed to the building models, and their nonlinear dynamic response is monitored in the context of alternate path method analysis. Then the ultimate collapse capacity of the modular buildings along with the collapse mechanism and failure modes are determined through the nonlinear static pushdown analysis. It is shown that the modular buildings possess considerable collapse resisting capacity and are able to offer high level of robustness compared to their conventional counterparts.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2020.110373</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternate path method ; Buildings ; Catastrophic collapse ; Collapse ; Damage localization ; Dynamic response ; Failure analysis ; Failure modes ; Finite element method ; Floors ; Gravitational collapse ; Gravity-induced progressive collapse ; Mathematical models ; Modular steel building ; Module loss scenarios ; Modules ; Nonlinear analysis ; Nonlinear dynamics ; Nonlinear response ; Pushdown analysis ; Rigid structures ; Robustness</subject><ispartof>Engineering structures, 2020-05, Vol.210, p.110373, Article 110373</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-5f6cfb1a743dc8f6acd280c1351fc8fd8327af6aa2a92b750889a1329566f8573</citedby><cites>FETCH-LOGICAL-c343t-5f6cfb1a743dc8f6acd280c1351fc8fd8327af6aa2a92b750889a1329566f8573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engstruct.2020.110373$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Alembagheri, M.</creatorcontrib><creatorcontrib>Sharafi, P.</creatorcontrib><creatorcontrib>Hajirezaei, R.</creatorcontrib><creatorcontrib>Samali, B.</creatorcontrib><title>Collapse capacity of modular steel buildings subject to module loss scenarios: The role of inter-module connections</title><title>Engineering structures</title><description>•Resisting capacity of corner-supported modular steel buildings.•Different module loss scenarios through instantaneous removal of different modules.•Nonlinear dynamic responses in the context of alternate path method analysis.•Collapse mechanisms and failure modes through nonlinear static pushdown analysis. In modular buildings made of volumetric units, robust structural action may be established by considering various scenarios for localisation of damage, corresponding to loss of supports at the ground floor, such as notional removal of ground floor modules. This paper studies the role of inter-module connections in resisting capacity of modular steel buildings against gravity-induced progressive collapse scenarios, through removing individual or combinations of entire modules at the ground floor. For this purpose, some typical modular buildings are modelled using the macro-model based finite element method. In order to investigate the role of inter-modular connections solely and separate from the effects of other elements, the modules are assumed volumetric rigid bodies, connected through horizontal and vertical interconnections, which are modelled employing translational axial and shear nonlinear springs. Different module loss scenarios are instantaneously imposed to the building models, and their nonlinear dynamic response is monitored in the context of alternate path method analysis. Then the ultimate collapse capacity of the modular buildings along with the collapse mechanism and failure modes are determined through the nonlinear static pushdown analysis. It is shown that the modular buildings possess considerable collapse resisting capacity and are able to offer high level of robustness compared to their conventional counterparts.</description><subject>Alternate path method</subject><subject>Buildings</subject><subject>Catastrophic collapse</subject><subject>Collapse</subject><subject>Damage localization</subject><subject>Dynamic response</subject><subject>Failure analysis</subject><subject>Failure modes</subject><subject>Finite element method</subject><subject>Floors</subject><subject>Gravitational collapse</subject><subject>Gravity-induced progressive collapse</subject><subject>Mathematical models</subject><subject>Modular steel building</subject><subject>Module loss scenarios</subject><subject>Modules</subject><subject>Nonlinear analysis</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear response</subject><subject>Pushdown analysis</subject><subject>Rigid structures</subject><subject>Robustness</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI3YIlzih9J7HCrKl5SJS7lbDnOBhyldrEdpP49Rqm4clrt7MysZhC6pWRFCa3vhxW4j5jCZNKKEZZRSrjgZ2hBpeCF4IyfowWhJS0Ia-pLdBXjQAhhUpIFihs_jvoQARt90MamI_Y93vtuGnXAMQGMuJ3s2Nn8BMepHcAknPxMATz6mGEDTgfr4wPefQIOPh-yi3UJQnEiGu9cllrv4jW66PUY4eY0l-j96XG3eSm2b8-vm_W2MLzkqaj62vQt1aLknZF9rU3HJDGUV7TPeyc5EzrDmumGtaIiUjaactZUdd3LSvAlupt9D8F_TRCTGvwUXH6pWFmSsmG8aTJLzCwTcpYAvToEu9fhqChRvw2rQf01rH4bVnPDWbmelZBDfFsIKhoLzkBnQ46qOm__9fgBrvqK5A</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Alembagheri, M.</creator><creator>Sharafi, P.</creator><creator>Hajirezaei, R.</creator><creator>Samali, B.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20200501</creationdate><title>Collapse capacity of modular steel buildings subject to module loss scenarios: The role of inter-module connections</title><author>Alembagheri, M. ; Sharafi, P. ; Hajirezaei, R. ; Samali, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-5f6cfb1a743dc8f6acd280c1351fc8fd8327af6aa2a92b750889a1329566f8573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternate path method</topic><topic>Buildings</topic><topic>Catastrophic collapse</topic><topic>Collapse</topic><topic>Damage localization</topic><topic>Dynamic response</topic><topic>Failure analysis</topic><topic>Failure modes</topic><topic>Finite element method</topic><topic>Floors</topic><topic>Gravitational collapse</topic><topic>Gravity-induced progressive collapse</topic><topic>Mathematical models</topic><topic>Modular steel building</topic><topic>Module loss scenarios</topic><topic>Modules</topic><topic>Nonlinear analysis</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear response</topic><topic>Pushdown analysis</topic><topic>Rigid structures</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alembagheri, M.</creatorcontrib><creatorcontrib>Sharafi, P.</creatorcontrib><creatorcontrib>Hajirezaei, R.</creatorcontrib><creatorcontrib>Samali, B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alembagheri, M.</au><au>Sharafi, P.</au><au>Hajirezaei, R.</au><au>Samali, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collapse capacity of modular steel buildings subject to module loss scenarios: The role of inter-module connections</atitle><jtitle>Engineering structures</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>210</volume><spage>110373</spage><pages>110373-</pages><artnum>110373</artnum><issn>0141-0296</issn><eissn>1873-7323</eissn><abstract>•Resisting capacity of corner-supported modular steel buildings.•Different module loss scenarios through instantaneous removal of different modules.•Nonlinear dynamic responses in the context of alternate path method analysis.•Collapse mechanisms and failure modes through nonlinear static pushdown analysis. In modular buildings made of volumetric units, robust structural action may be established by considering various scenarios for localisation of damage, corresponding to loss of supports at the ground floor, such as notional removal of ground floor modules. This paper studies the role of inter-module connections in resisting capacity of modular steel buildings against gravity-induced progressive collapse scenarios, through removing individual or combinations of entire modules at the ground floor. For this purpose, some typical modular buildings are modelled using the macro-model based finite element method. In order to investigate the role of inter-modular connections solely and separate from the effects of other elements, the modules are assumed volumetric rigid bodies, connected through horizontal and vertical interconnections, which are modelled employing translational axial and shear nonlinear springs. Different module loss scenarios are instantaneously imposed to the building models, and their nonlinear dynamic response is monitored in the context of alternate path method analysis. Then the ultimate collapse capacity of the modular buildings along with the collapse mechanism and failure modes are determined through the nonlinear static pushdown analysis. It is shown that the modular buildings possess considerable collapse resisting capacity and are able to offer high level of robustness compared to their conventional counterparts.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2020.110373</doi></addata></record>
fulltext fulltext
identifier ISSN: 0141-0296
ispartof Engineering structures, 2020-05, Vol.210, p.110373, Article 110373
issn 0141-0296
1873-7323
language eng
recordid cdi_proquest_journals_2440492399
source Access via ScienceDirect (Elsevier)
subjects Alternate path method
Buildings
Catastrophic collapse
Collapse
Damage localization
Dynamic response
Failure analysis
Failure modes
Finite element method
Floors
Gravitational collapse
Gravity-induced progressive collapse
Mathematical models
Modular steel building
Module loss scenarios
Modules
Nonlinear analysis
Nonlinear dynamics
Nonlinear response
Pushdown analysis
Rigid structures
Robustness
title Collapse capacity of modular steel buildings subject to module loss scenarios: The role of inter-module connections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collapse%20capacity%20of%20modular%20steel%20buildings%20subject%20to%20module%20loss%20scenarios:%20The%20role%20of%20inter-module%20connections&rft.jtitle=Engineering%20structures&rft.au=Alembagheri,%20M.&rft.date=2020-05-01&rft.volume=210&rft.spage=110373&rft.pages=110373-&rft.artnum=110373&rft.issn=0141-0296&rft.eissn=1873-7323&rft_id=info:doi/10.1016/j.engstruct.2020.110373&rft_dat=%3Cproquest_cross%3E2440492399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440492399&rft_id=info:pmid/&rft_els_id=S0141029619329645&rfr_iscdi=true