Unsupervised deep hashing by joint optimization for pulmonary nodule image retrieval

•Unified feature learning and binary code learning can reduce information loss.•The equal-bit quantization method will accumulate quantization errors.•The feature quantization using relaxation strategy will produce suboptimal solution. In recent years, hash-based image retrieval has attracted great...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2020-07, Vol.159, p.107785, Article 107785
Hauptverfasser: Qi, Yongjun, Gu, Junhua, Zhang, Yajuan, Jia, Yongna, Su, Yingru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107785
container_title Measurement : journal of the International Measurement Confederation
container_volume 159
creator Qi, Yongjun
Gu, Junhua
Zhang, Yajuan
Jia, Yongna
Su, Yingru
description •Unified feature learning and binary code learning can reduce information loss.•The equal-bit quantization method will accumulate quantization errors.•The feature quantization using relaxation strategy will produce suboptimal solution. In recent years, hash-based image retrieval has attracted great attention due to the rapid growth of medical images. In the paper, an end-to-end unsupervised deep hashing is proposed, where feature extraction and binary optimization are carried out by joint optimization. Our method consists of five components: a shared deep convolution neural network for learning image representations, a deconvolution module for reconstructing the original images, a classification module for leveraging semantic supervision by pseudo labels, a binary code learning module for encoding images features into binary codes, and a joint loss function for deep hash function learning. In addition, the real-valued features balanced in different dimensions by a rotation matrix are quantized directly into discrete binary codes in an alternating optimization approach to minimize the quantization loss. Experiments have been performed on the pulmonary nodule images dataset and the results demonstrate the proposed method can yield better retrieval performance by comparing with the state-of-the-art unsupervised hashing methods.
doi_str_mv 10.1016/j.measurement.2020.107785
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440492352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224120303237</els_id><sourcerecordid>2440492352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-be6686811a145cff21589fa1d63e0f4bfb7973e28ec33226537804974dae4df33</originalsourceid><addsrcrecordid>eNqNkEtrwzAQhEVpoWna_6DSs1O9LNvHEvqCQC8J9CZke5XI2JIr2YH019fBPfTY08IyM7vzIXRPyYoSKh-bVQc6jgE6cMOKEXbeZ1meXqAFzTOeCMo-L9GCMMkTxgS9RjcxNoQQyQu5QNudi2MP4Wgj1LgG6PFBx4N1e1yecOOtG7DvB9vZbz1Y77DxAfdj23mnwwk7X48tYNvpPeAAQ7Bw1O0tujK6jXD3O5do9_K8Xb8lm4_X9_XTJqlYwYekBClzmVOqqUgrYxhN88JoWksOxIjSlFmRcWA5VJwzJlOe5UQUmag1iNpwvkQPc24f_NcIcVCNH4ObTiomxCRlPGWTqphVVfAxBjCqD9PD4aQoUWeIqlF_IKozRDVDnLzr2QtTjaOFoGJlwVVQ2wDVoGpv_5HyA0F5gjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440492352</pqid></control><display><type>article</type><title>Unsupervised deep hashing by joint optimization for pulmonary nodule image retrieval</title><source>Elsevier ScienceDirect Journals</source><creator>Qi, Yongjun ; Gu, Junhua ; Zhang, Yajuan ; Jia, Yongna ; Su, Yingru</creator><creatorcontrib>Qi, Yongjun ; Gu, Junhua ; Zhang, Yajuan ; Jia, Yongna ; Su, Yingru</creatorcontrib><description>•Unified feature learning and binary code learning can reduce information loss.•The equal-bit quantization method will accumulate quantization errors.•The feature quantization using relaxation strategy will produce suboptimal solution. In recent years, hash-based image retrieval has attracted great attention due to the rapid growth of medical images. In the paper, an end-to-end unsupervised deep hashing is proposed, where feature extraction and binary optimization are carried out by joint optimization. Our method consists of five components: a shared deep convolution neural network for learning image representations, a deconvolution module for reconstructing the original images, a classification module for leveraging semantic supervision by pseudo labels, a binary code learning module for encoding images features into binary codes, and a joint loss function for deep hash function learning. In addition, the real-valued features balanced in different dimensions by a rotation matrix are quantized directly into discrete binary codes in an alternating optimization approach to minimize the quantization loss. Experiments have been performed on the pulmonary nodule images dataset and the results demonstrate the proposed method can yield better retrieval performance by comparing with the state-of-the-art unsupervised hashing methods.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2020.107785</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Artificial neural networks ; Binary codes ; Convolution ; Deep learning ; Feature extraction ; Image classification ; Image management ; Image reconstruction ; Image retrieval ; Information retrieval ; Learning ; Medical imaging ; Modules ; Neural networks ; Optimization ; Pulmonary nodule ; Retrieval ; Unsupervised deep hashing</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2020-07, Vol.159, p.107785, Article 107785</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jul 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-be6686811a145cff21589fa1d63e0f4bfb7973e28ec33226537804974dae4df33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.measurement.2020.107785$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Qi, Yongjun</creatorcontrib><creatorcontrib>Gu, Junhua</creatorcontrib><creatorcontrib>Zhang, Yajuan</creatorcontrib><creatorcontrib>Jia, Yongna</creatorcontrib><creatorcontrib>Su, Yingru</creatorcontrib><title>Unsupervised deep hashing by joint optimization for pulmonary nodule image retrieval</title><title>Measurement : journal of the International Measurement Confederation</title><description>•Unified feature learning and binary code learning can reduce information loss.•The equal-bit quantization method will accumulate quantization errors.•The feature quantization using relaxation strategy will produce suboptimal solution. In recent years, hash-based image retrieval has attracted great attention due to the rapid growth of medical images. In the paper, an end-to-end unsupervised deep hashing is proposed, where feature extraction and binary optimization are carried out by joint optimization. Our method consists of five components: a shared deep convolution neural network for learning image representations, a deconvolution module for reconstructing the original images, a classification module for leveraging semantic supervision by pseudo labels, a binary code learning module for encoding images features into binary codes, and a joint loss function for deep hash function learning. In addition, the real-valued features balanced in different dimensions by a rotation matrix are quantized directly into discrete binary codes in an alternating optimization approach to minimize the quantization loss. Experiments have been performed on the pulmonary nodule images dataset and the results demonstrate the proposed method can yield better retrieval performance by comparing with the state-of-the-art unsupervised hashing methods.</description><subject>Artificial neural networks</subject><subject>Binary codes</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image management</subject><subject>Image reconstruction</subject><subject>Image retrieval</subject><subject>Information retrieval</subject><subject>Learning</subject><subject>Medical imaging</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Pulmonary nodule</subject><subject>Retrieval</subject><subject>Unsupervised deep hashing</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkEtrwzAQhEVpoWna_6DSs1O9LNvHEvqCQC8J9CZke5XI2JIr2YH019fBPfTY08IyM7vzIXRPyYoSKh-bVQc6jgE6cMOKEXbeZ1meXqAFzTOeCMo-L9GCMMkTxgS9RjcxNoQQyQu5QNudi2MP4Wgj1LgG6PFBx4N1e1yecOOtG7DvB9vZbz1Y77DxAfdj23mnwwk7X48tYNvpPeAAQ7Bw1O0tujK6jXD3O5do9_K8Xb8lm4_X9_XTJqlYwYekBClzmVOqqUgrYxhN88JoWksOxIjSlFmRcWA5VJwzJlOe5UQUmag1iNpwvkQPc24f_NcIcVCNH4ObTiomxCRlPGWTqphVVfAxBjCqD9PD4aQoUWeIqlF_IKozRDVDnLzr2QtTjaOFoGJlwVVQ2wDVoGpv_5HyA0F5gjw</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Qi, Yongjun</creator><creator>Gu, Junhua</creator><creator>Zhang, Yajuan</creator><creator>Jia, Yongna</creator><creator>Su, Yingru</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200715</creationdate><title>Unsupervised deep hashing by joint optimization for pulmonary nodule image retrieval</title><author>Qi, Yongjun ; Gu, Junhua ; Zhang, Yajuan ; Jia, Yongna ; Su, Yingru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-be6686811a145cff21589fa1d63e0f4bfb7973e28ec33226537804974dae4df33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Binary codes</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image management</topic><topic>Image reconstruction</topic><topic>Image retrieval</topic><topic>Information retrieval</topic><topic>Learning</topic><topic>Medical imaging</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Pulmonary nodule</topic><topic>Retrieval</topic><topic>Unsupervised deep hashing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Yongjun</creatorcontrib><creatorcontrib>Gu, Junhua</creatorcontrib><creatorcontrib>Zhang, Yajuan</creatorcontrib><creatorcontrib>Jia, Yongna</creatorcontrib><creatorcontrib>Su, Yingru</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Yongjun</au><au>Gu, Junhua</au><au>Zhang, Yajuan</au><au>Jia, Yongna</au><au>Su, Yingru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised deep hashing by joint optimization for pulmonary nodule image retrieval</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>159</volume><spage>107785</spage><pages>107785-</pages><artnum>107785</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•Unified feature learning and binary code learning can reduce information loss.•The equal-bit quantization method will accumulate quantization errors.•The feature quantization using relaxation strategy will produce suboptimal solution. In recent years, hash-based image retrieval has attracted great attention due to the rapid growth of medical images. In the paper, an end-to-end unsupervised deep hashing is proposed, where feature extraction and binary optimization are carried out by joint optimization. Our method consists of five components: a shared deep convolution neural network for learning image representations, a deconvolution module for reconstructing the original images, a classification module for leveraging semantic supervision by pseudo labels, a binary code learning module for encoding images features into binary codes, and a joint loss function for deep hash function learning. In addition, the real-valued features balanced in different dimensions by a rotation matrix are quantized directly into discrete binary codes in an alternating optimization approach to minimize the quantization loss. Experiments have been performed on the pulmonary nodule images dataset and the results demonstrate the proposed method can yield better retrieval performance by comparing with the state-of-the-art unsupervised hashing methods.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2020.107785</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2020-07, Vol.159, p.107785, Article 107785
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2440492352
source Elsevier ScienceDirect Journals
subjects Artificial neural networks
Binary codes
Convolution
Deep learning
Feature extraction
Image classification
Image management
Image reconstruction
Image retrieval
Information retrieval
Learning
Medical imaging
Modules
Neural networks
Optimization
Pulmonary nodule
Retrieval
Unsupervised deep hashing
title Unsupervised deep hashing by joint optimization for pulmonary nodule image retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20deep%20hashing%20by%20joint%20optimization%20for%20pulmonary%20nodule%20image%20retrieval&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Qi,%20Yongjun&rft.date=2020-07-15&rft.volume=159&rft.spage=107785&rft.pages=107785-&rft.artnum=107785&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2020.107785&rft_dat=%3Cproquest_cross%3E2440492352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440492352&rft_id=info:pmid/&rft_els_id=S0263224120303237&rfr_iscdi=true