Unsupervised deep hashing by joint optimization for pulmonary nodule image retrieval
•Unified feature learning and binary code learning can reduce information loss.•The equal-bit quantization method will accumulate quantization errors.•The feature quantization using relaxation strategy will produce suboptimal solution. In recent years, hash-based image retrieval has attracted great...
Gespeichert in:
Veröffentlicht in: | Measurement : journal of the International Measurement Confederation 2020-07, Vol.159, p.107785, Article 107785 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107785 |
container_title | Measurement : journal of the International Measurement Confederation |
container_volume | 159 |
creator | Qi, Yongjun Gu, Junhua Zhang, Yajuan Jia, Yongna Su, Yingru |
description | •Unified feature learning and binary code learning can reduce information loss.•The equal-bit quantization method will accumulate quantization errors.•The feature quantization using relaxation strategy will produce suboptimal solution.
In recent years, hash-based image retrieval has attracted great attention due to the rapid growth of medical images. In the paper, an end-to-end unsupervised deep hashing is proposed, where feature extraction and binary optimization are carried out by joint optimization. Our method consists of five components: a shared deep convolution neural network for learning image representations, a deconvolution module for reconstructing the original images, a classification module for leveraging semantic supervision by pseudo labels, a binary code learning module for encoding images features into binary codes, and a joint loss function for deep hash function learning. In addition, the real-valued features balanced in different dimensions by a rotation matrix are quantized directly into discrete binary codes in an alternating optimization approach to minimize the quantization loss. Experiments have been performed on the pulmonary nodule images dataset and the results demonstrate the proposed method can yield better retrieval performance by comparing with the state-of-the-art unsupervised hashing methods. |
doi_str_mv | 10.1016/j.measurement.2020.107785 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440492352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224120303237</els_id><sourcerecordid>2440492352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-be6686811a145cff21589fa1d63e0f4bfb7973e28ec33226537804974dae4df33</originalsourceid><addsrcrecordid>eNqNkEtrwzAQhEVpoWna_6DSs1O9LNvHEvqCQC8J9CZke5XI2JIr2YH019fBPfTY08IyM7vzIXRPyYoSKh-bVQc6jgE6cMOKEXbeZ1meXqAFzTOeCMo-L9GCMMkTxgS9RjcxNoQQyQu5QNudi2MP4Wgj1LgG6PFBx4N1e1yecOOtG7DvB9vZbz1Y77DxAfdj23mnwwk7X48tYNvpPeAAQ7Bw1O0tujK6jXD3O5do9_K8Xb8lm4_X9_XTJqlYwYekBClzmVOqqUgrYxhN88JoWksOxIjSlFmRcWA5VJwzJlOe5UQUmag1iNpwvkQPc24f_NcIcVCNH4ObTiomxCRlPGWTqphVVfAxBjCqD9PD4aQoUWeIqlF_IKozRDVDnLzr2QtTjaOFoGJlwVVQ2wDVoGpv_5HyA0F5gjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440492352</pqid></control><display><type>article</type><title>Unsupervised deep hashing by joint optimization for pulmonary nodule image retrieval</title><source>Elsevier ScienceDirect Journals</source><creator>Qi, Yongjun ; Gu, Junhua ; Zhang, Yajuan ; Jia, Yongna ; Su, Yingru</creator><creatorcontrib>Qi, Yongjun ; Gu, Junhua ; Zhang, Yajuan ; Jia, Yongna ; Su, Yingru</creatorcontrib><description>•Unified feature learning and binary code learning can reduce information loss.•The equal-bit quantization method will accumulate quantization errors.•The feature quantization using relaxation strategy will produce suboptimal solution.
In recent years, hash-based image retrieval has attracted great attention due to the rapid growth of medical images. In the paper, an end-to-end unsupervised deep hashing is proposed, where feature extraction and binary optimization are carried out by joint optimization. Our method consists of five components: a shared deep convolution neural network for learning image representations, a deconvolution module for reconstructing the original images, a classification module for leveraging semantic supervision by pseudo labels, a binary code learning module for encoding images features into binary codes, and a joint loss function for deep hash function learning. In addition, the real-valued features balanced in different dimensions by a rotation matrix are quantized directly into discrete binary codes in an alternating optimization approach to minimize the quantization loss. Experiments have been performed on the pulmonary nodule images dataset and the results demonstrate the proposed method can yield better retrieval performance by comparing with the state-of-the-art unsupervised hashing methods.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2020.107785</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Artificial neural networks ; Binary codes ; Convolution ; Deep learning ; Feature extraction ; Image classification ; Image management ; Image reconstruction ; Image retrieval ; Information retrieval ; Learning ; Medical imaging ; Modules ; Neural networks ; Optimization ; Pulmonary nodule ; Retrieval ; Unsupervised deep hashing</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2020-07, Vol.159, p.107785, Article 107785</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jul 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-be6686811a145cff21589fa1d63e0f4bfb7973e28ec33226537804974dae4df33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.measurement.2020.107785$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Qi, Yongjun</creatorcontrib><creatorcontrib>Gu, Junhua</creatorcontrib><creatorcontrib>Zhang, Yajuan</creatorcontrib><creatorcontrib>Jia, Yongna</creatorcontrib><creatorcontrib>Su, Yingru</creatorcontrib><title>Unsupervised deep hashing by joint optimization for pulmonary nodule image retrieval</title><title>Measurement : journal of the International Measurement Confederation</title><description>•Unified feature learning and binary code learning can reduce information loss.•The equal-bit quantization method will accumulate quantization errors.•The feature quantization using relaxation strategy will produce suboptimal solution.
In recent years, hash-based image retrieval has attracted great attention due to the rapid growth of medical images. In the paper, an end-to-end unsupervised deep hashing is proposed, where feature extraction and binary optimization are carried out by joint optimization. Our method consists of five components: a shared deep convolution neural network for learning image representations, a deconvolution module for reconstructing the original images, a classification module for leveraging semantic supervision by pseudo labels, a binary code learning module for encoding images features into binary codes, and a joint loss function for deep hash function learning. In addition, the real-valued features balanced in different dimensions by a rotation matrix are quantized directly into discrete binary codes in an alternating optimization approach to minimize the quantization loss. Experiments have been performed on the pulmonary nodule images dataset and the results demonstrate the proposed method can yield better retrieval performance by comparing with the state-of-the-art unsupervised hashing methods.</description><subject>Artificial neural networks</subject><subject>Binary codes</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image management</subject><subject>Image reconstruction</subject><subject>Image retrieval</subject><subject>Information retrieval</subject><subject>Learning</subject><subject>Medical imaging</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Pulmonary nodule</subject><subject>Retrieval</subject><subject>Unsupervised deep hashing</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkEtrwzAQhEVpoWna_6DSs1O9LNvHEvqCQC8J9CZke5XI2JIr2YH019fBPfTY08IyM7vzIXRPyYoSKh-bVQc6jgE6cMOKEXbeZ1meXqAFzTOeCMo-L9GCMMkTxgS9RjcxNoQQyQu5QNudi2MP4Wgj1LgG6PFBx4N1e1yecOOtG7DvB9vZbz1Y77DxAfdj23mnwwk7X48tYNvpPeAAQ7Bw1O0tujK6jXD3O5do9_K8Xb8lm4_X9_XTJqlYwYekBClzmVOqqUgrYxhN88JoWksOxIjSlFmRcWA5VJwzJlOe5UQUmag1iNpwvkQPc24f_NcIcVCNH4ObTiomxCRlPGWTqphVVfAxBjCqD9PD4aQoUWeIqlF_IKozRDVDnLzr2QtTjaOFoGJlwVVQ2wDVoGpv_5HyA0F5gjw</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Qi, Yongjun</creator><creator>Gu, Junhua</creator><creator>Zhang, Yajuan</creator><creator>Jia, Yongna</creator><creator>Su, Yingru</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200715</creationdate><title>Unsupervised deep hashing by joint optimization for pulmonary nodule image retrieval</title><author>Qi, Yongjun ; Gu, Junhua ; Zhang, Yajuan ; Jia, Yongna ; Su, Yingru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-be6686811a145cff21589fa1d63e0f4bfb7973e28ec33226537804974dae4df33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Binary codes</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image management</topic><topic>Image reconstruction</topic><topic>Image retrieval</topic><topic>Information retrieval</topic><topic>Learning</topic><topic>Medical imaging</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Pulmonary nodule</topic><topic>Retrieval</topic><topic>Unsupervised deep hashing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Yongjun</creatorcontrib><creatorcontrib>Gu, Junhua</creatorcontrib><creatorcontrib>Zhang, Yajuan</creatorcontrib><creatorcontrib>Jia, Yongna</creatorcontrib><creatorcontrib>Su, Yingru</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Yongjun</au><au>Gu, Junhua</au><au>Zhang, Yajuan</au><au>Jia, Yongna</au><au>Su, Yingru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised deep hashing by joint optimization for pulmonary nodule image retrieval</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>159</volume><spage>107785</spage><pages>107785-</pages><artnum>107785</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•Unified feature learning and binary code learning can reduce information loss.•The equal-bit quantization method will accumulate quantization errors.•The feature quantization using relaxation strategy will produce suboptimal solution.
In recent years, hash-based image retrieval has attracted great attention due to the rapid growth of medical images. In the paper, an end-to-end unsupervised deep hashing is proposed, where feature extraction and binary optimization are carried out by joint optimization. Our method consists of five components: a shared deep convolution neural network for learning image representations, a deconvolution module for reconstructing the original images, a classification module for leveraging semantic supervision by pseudo labels, a binary code learning module for encoding images features into binary codes, and a joint loss function for deep hash function learning. In addition, the real-valued features balanced in different dimensions by a rotation matrix are quantized directly into discrete binary codes in an alternating optimization approach to minimize the quantization loss. Experiments have been performed on the pulmonary nodule images dataset and the results demonstrate the proposed method can yield better retrieval performance by comparing with the state-of-the-art unsupervised hashing methods.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2020.107785</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-2241 |
ispartof | Measurement : journal of the International Measurement Confederation, 2020-07, Vol.159, p.107785, Article 107785 |
issn | 0263-2241 1873-412X |
language | eng |
recordid | cdi_proquest_journals_2440492352 |
source | Elsevier ScienceDirect Journals |
subjects | Artificial neural networks Binary codes Convolution Deep learning Feature extraction Image classification Image management Image reconstruction Image retrieval Information retrieval Learning Medical imaging Modules Neural networks Optimization Pulmonary nodule Retrieval Unsupervised deep hashing |
title | Unsupervised deep hashing by joint optimization for pulmonary nodule image retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20deep%20hashing%20by%20joint%20optimization%20for%20pulmonary%20nodule%20image%20retrieval&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Qi,%20Yongjun&rft.date=2020-07-15&rft.volume=159&rft.spage=107785&rft.pages=107785-&rft.artnum=107785&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2020.107785&rft_dat=%3Cproquest_cross%3E2440492352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440492352&rft_id=info:pmid/&rft_els_id=S0263224120303237&rfr_iscdi=true |