Impact of altitude on the real driving emission (RDE) results calculated in accordance to moving averaging window (MAW) method

Over half of the high altitude RDE tests failed to pass trip validity verification. To find out the reason and proper solution, vehicles were tested over The Worldwide harmonized Light vehicles Test Cycles (WLTC)/RDE at various altitudes and RDE tests were calculated using different WLTC reference d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2020-10, Vol.277, p.117929, Article 117929
Hauptverfasser: Wang, Yachao, Ge, Yunshan, Wang, Junfang, Wang, Xin, Yin, Hang, Hao, Lijun, Tan, Jianwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 117929
container_title Fuel (Guildford)
container_volume 277
creator Wang, Yachao
Ge, Yunshan
Wang, Junfang
Wang, Xin
Yin, Hang
Hao, Lijun
Tan, Jianwei
description Over half of the high altitude RDE tests failed to pass trip validity verification. To find out the reason and proper solution, vehicles were tested over The Worldwide harmonized Light vehicles Test Cycles (WLTC)/RDE at various altitudes and RDE tests were calculated using different WLTC reference data. Generally, the higher the altitude, the lower the vehicle CO2 emission and CO2 emission of naturally aspirated test vehicle has a linear correlation with altitudes: every 1000 m the altitude rise, WLTC CO2 emission will decrease 5.31%. The reasons for urban trip validity verification failure are the intensity of test cycles, different calculation methods and lower air resistance at high altitude, while for rural/motorway trip validity verification failure, lower air resistance is the only reason. Both high altitude reference data and sea level reference data with coefficients are plausible for high altitude RDE calculation. At 2400 m, the coefficients are 0.98, 0.91 and 0.86 for urban, rural and motorway respectively, but the calculation of the coefficients needs to be verified by more study. No correlation was found between reference data and RDE results.
doi_str_mv 10.1016/j.fuel.2020.117929
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440491841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001623612030925X</els_id><sourcerecordid>2440491841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-ddce89e725c4b0b6c8be27106ea3e41553e7ad27c5226ee8e85cddb2b86815293</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPASz1sTbL_suClaNVCRRDFY8gm0zZld1OTbIsXP7up9exphnnvzQw_hC4pGVNCi5v1eNFDM2aExQEtK1YdoQHlZZqUNE-P0YBEV8LSgp6iM-_XhJCS59kAfc_ajVQB2wWWTTCh14Bth8MKsAPZYO3M1nRLDK3x3kRl9Ho_vY6a75vgsZKN6hsZQGPTYamUdVp2CnCwuLW_SbkFJ5f7bmc6bXd49Dz5uMYthJXV5-hkIRsPF391iN4fpm93T8n85XF2N5knKmU8JFor4BWULFdZTepC8RpYSUkBMoWM5nkKpdSsVDljBQAHniuta1bzgtOcVekQXR32bpz97MEHsba96-JJwbKMZBXlGY0udnApZ713sBAbZ1rpvgQlYs9ZrMWes9hzFgfOMXR7CEH8f2vACa8MRAbaOFBBaGv-i_8AGYKHEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440491841</pqid></control><display><type>article</type><title>Impact of altitude on the real driving emission (RDE) results calculated in accordance to moving averaging window (MAW) method</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Yachao ; Ge, Yunshan ; Wang, Junfang ; Wang, Xin ; Yin, Hang ; Hao, Lijun ; Tan, Jianwei</creator><creatorcontrib>Wang, Yachao ; Ge, Yunshan ; Wang, Junfang ; Wang, Xin ; Yin, Hang ; Hao, Lijun ; Tan, Jianwei</creatorcontrib><description>Over half of the high altitude RDE tests failed to pass trip validity verification. To find out the reason and proper solution, vehicles were tested over The Worldwide harmonized Light vehicles Test Cycles (WLTC)/RDE at various altitudes and RDE tests were calculated using different WLTC reference data. Generally, the higher the altitude, the lower the vehicle CO2 emission and CO2 emission of naturally aspirated test vehicle has a linear correlation with altitudes: every 1000 m the altitude rise, WLTC CO2 emission will decrease 5.31%. The reasons for urban trip validity verification failure are the intensity of test cycles, different calculation methods and lower air resistance at high altitude, while for rural/motorway trip validity verification failure, lower air resistance is the only reason. Both high altitude reference data and sea level reference data with coefficients are plausible for high altitude RDE calculation. At 2400 m, the coefficients are 0.98, 0.91 and 0.86 for urban, rural and motorway respectively, but the calculation of the coefficients needs to be verified by more study. No correlation was found between reference data and RDE results.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2020.117929</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Altitude ; Carbon dioxide ; Carbon dioxide emissions ; CLTC ; CO2 emission ; Coefficients ; Correlation analysis ; Emission analysis ; High altitude ; Highways ; Light duty vehicles ; Mathematical analysis ; MAW ; RDE ; Sea level ; Test vehicles ; Validity ; Vehicle emissions ; Vehicles ; Verification ; WLTC</subject><ispartof>Fuel (Guildford), 2020-10, Vol.277, p.117929, Article 117929</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-ddce89e725c4b0b6c8be27106ea3e41553e7ad27c5226ee8e85cddb2b86815293</citedby><cites>FETCH-LOGICAL-c328t-ddce89e725c4b0b6c8be27106ea3e41553e7ad27c5226ee8e85cddb2b86815293</cites><orcidid>0000-0002-4483-5830 ; 0000-0002-9993-8028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2020.117929$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Yachao</creatorcontrib><creatorcontrib>Ge, Yunshan</creatorcontrib><creatorcontrib>Wang, Junfang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Yin, Hang</creatorcontrib><creatorcontrib>Hao, Lijun</creatorcontrib><creatorcontrib>Tan, Jianwei</creatorcontrib><title>Impact of altitude on the real driving emission (RDE) results calculated in accordance to moving averaging window (MAW) method</title><title>Fuel (Guildford)</title><description>Over half of the high altitude RDE tests failed to pass trip validity verification. To find out the reason and proper solution, vehicles were tested over The Worldwide harmonized Light vehicles Test Cycles (WLTC)/RDE at various altitudes and RDE tests were calculated using different WLTC reference data. Generally, the higher the altitude, the lower the vehicle CO2 emission and CO2 emission of naturally aspirated test vehicle has a linear correlation with altitudes: every 1000 m the altitude rise, WLTC CO2 emission will decrease 5.31%. The reasons for urban trip validity verification failure are the intensity of test cycles, different calculation methods and lower air resistance at high altitude, while for rural/motorway trip validity verification failure, lower air resistance is the only reason. Both high altitude reference data and sea level reference data with coefficients are plausible for high altitude RDE calculation. At 2400 m, the coefficients are 0.98, 0.91 and 0.86 for urban, rural and motorway respectively, but the calculation of the coefficients needs to be verified by more study. No correlation was found between reference data and RDE results.</description><subject>Altitude</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>CLTC</subject><subject>CO2 emission</subject><subject>Coefficients</subject><subject>Correlation analysis</subject><subject>Emission analysis</subject><subject>High altitude</subject><subject>Highways</subject><subject>Light duty vehicles</subject><subject>Mathematical analysis</subject><subject>MAW</subject><subject>RDE</subject><subject>Sea level</subject><subject>Test vehicles</subject><subject>Validity</subject><subject>Vehicle emissions</subject><subject>Vehicles</subject><subject>Verification</subject><subject>WLTC</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPASz1sTbL_suClaNVCRRDFY8gm0zZld1OTbIsXP7up9exphnnvzQw_hC4pGVNCi5v1eNFDM2aExQEtK1YdoQHlZZqUNE-P0YBEV8LSgp6iM-_XhJCS59kAfc_ajVQB2wWWTTCh14Bth8MKsAPZYO3M1nRLDK3x3kRl9Ho_vY6a75vgsZKN6hsZQGPTYamUdVp2CnCwuLW_SbkFJ5f7bmc6bXd49Dz5uMYthJXV5-hkIRsPF391iN4fpm93T8n85XF2N5knKmU8JFor4BWULFdZTepC8RpYSUkBMoWM5nkKpdSsVDljBQAHniuta1bzgtOcVekQXR32bpz97MEHsba96-JJwbKMZBXlGY0udnApZ713sBAbZ1rpvgQlYs9ZrMWes9hzFgfOMXR7CEH8f2vACa8MRAbaOFBBaGv-i_8AGYKHEQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Wang, Yachao</creator><creator>Ge, Yunshan</creator><creator>Wang, Junfang</creator><creator>Wang, Xin</creator><creator>Yin, Hang</creator><creator>Hao, Lijun</creator><creator>Tan, Jianwei</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4483-5830</orcidid><orcidid>https://orcid.org/0000-0002-9993-8028</orcidid></search><sort><creationdate>20201001</creationdate><title>Impact of altitude on the real driving emission (RDE) results calculated in accordance to moving averaging window (MAW) method</title><author>Wang, Yachao ; Ge, Yunshan ; Wang, Junfang ; Wang, Xin ; Yin, Hang ; Hao, Lijun ; Tan, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-ddce89e725c4b0b6c8be27106ea3e41553e7ad27c5226ee8e85cddb2b86815293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Altitude</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>CLTC</topic><topic>CO2 emission</topic><topic>Coefficients</topic><topic>Correlation analysis</topic><topic>Emission analysis</topic><topic>High altitude</topic><topic>Highways</topic><topic>Light duty vehicles</topic><topic>Mathematical analysis</topic><topic>MAW</topic><topic>RDE</topic><topic>Sea level</topic><topic>Test vehicles</topic><topic>Validity</topic><topic>Vehicle emissions</topic><topic>Vehicles</topic><topic>Verification</topic><topic>WLTC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yachao</creatorcontrib><creatorcontrib>Ge, Yunshan</creatorcontrib><creatorcontrib>Wang, Junfang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Yin, Hang</creatorcontrib><creatorcontrib>Hao, Lijun</creatorcontrib><creatorcontrib>Tan, Jianwei</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yachao</au><au>Ge, Yunshan</au><au>Wang, Junfang</au><au>Wang, Xin</au><au>Yin, Hang</au><au>Hao, Lijun</au><au>Tan, Jianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of altitude on the real driving emission (RDE) results calculated in accordance to moving averaging window (MAW) method</atitle><jtitle>Fuel (Guildford)</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>277</volume><spage>117929</spage><pages>117929-</pages><artnum>117929</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Over half of the high altitude RDE tests failed to pass trip validity verification. To find out the reason and proper solution, vehicles were tested over The Worldwide harmonized Light vehicles Test Cycles (WLTC)/RDE at various altitudes and RDE tests were calculated using different WLTC reference data. Generally, the higher the altitude, the lower the vehicle CO2 emission and CO2 emission of naturally aspirated test vehicle has a linear correlation with altitudes: every 1000 m the altitude rise, WLTC CO2 emission will decrease 5.31%. The reasons for urban trip validity verification failure are the intensity of test cycles, different calculation methods and lower air resistance at high altitude, while for rural/motorway trip validity verification failure, lower air resistance is the only reason. Both high altitude reference data and sea level reference data with coefficients are plausible for high altitude RDE calculation. At 2400 m, the coefficients are 0.98, 0.91 and 0.86 for urban, rural and motorway respectively, but the calculation of the coefficients needs to be verified by more study. No correlation was found between reference data and RDE results.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2020.117929</doi><orcidid>https://orcid.org/0000-0002-4483-5830</orcidid><orcidid>https://orcid.org/0000-0002-9993-8028</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2020-10, Vol.277, p.117929, Article 117929
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2440491841
source Access via ScienceDirect (Elsevier)
subjects Altitude
Carbon dioxide
Carbon dioxide emissions
CLTC
CO2 emission
Coefficients
Correlation analysis
Emission analysis
High altitude
Highways
Light duty vehicles
Mathematical analysis
MAW
RDE
Sea level
Test vehicles
Validity
Vehicle emissions
Vehicles
Verification
WLTC
title Impact of altitude on the real driving emission (RDE) results calculated in accordance to moving averaging window (MAW) method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A18%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20altitude%20on%20the%20real%20driving%20emission%20(RDE)%20results%20calculated%20in%20accordance%20to%20moving%20averaging%20window%20(MAW)%20method&rft.jtitle=Fuel%20(Guildford)&rft.au=Wang,%20Yachao&rft.date=2020-10-01&rft.volume=277&rft.spage=117929&rft.pages=117929-&rft.artnum=117929&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2020.117929&rft_dat=%3Cproquest_cross%3E2440491841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440491841&rft_id=info:pmid/&rft_els_id=S001623612030925X&rfr_iscdi=true