Impact of altitude on the real driving emission (RDE) results calculated in accordance to moving averaging window (MAW) method
Over half of the high altitude RDE tests failed to pass trip validity verification. To find out the reason and proper solution, vehicles were tested over The Worldwide harmonized Light vehicles Test Cycles (WLTC)/RDE at various altitudes and RDE tests were calculated using different WLTC reference d...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2020-10, Vol.277, p.117929, Article 117929 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 117929 |
container_title | Fuel (Guildford) |
container_volume | 277 |
creator | Wang, Yachao Ge, Yunshan Wang, Junfang Wang, Xin Yin, Hang Hao, Lijun Tan, Jianwei |
description | Over half of the high altitude RDE tests failed to pass trip validity verification. To find out the reason and proper solution, vehicles were tested over The Worldwide harmonized Light vehicles Test Cycles (WLTC)/RDE at various altitudes and RDE tests were calculated using different WLTC reference data. Generally, the higher the altitude, the lower the vehicle CO2 emission and CO2 emission of naturally aspirated test vehicle has a linear correlation with altitudes: every 1000 m the altitude rise, WLTC CO2 emission will decrease 5.31%. The reasons for urban trip validity verification failure are the intensity of test cycles, different calculation methods and lower air resistance at high altitude, while for rural/motorway trip validity verification failure, lower air resistance is the only reason. Both high altitude reference data and sea level reference data with coefficients are plausible for high altitude RDE calculation. At 2400 m, the coefficients are 0.98, 0.91 and 0.86 for urban, rural and motorway respectively, but the calculation of the coefficients needs to be verified by more study. No correlation was found between reference data and RDE results. |
doi_str_mv | 10.1016/j.fuel.2020.117929 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440491841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001623612030925X</els_id><sourcerecordid>2440491841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-ddce89e725c4b0b6c8be27106ea3e41553e7ad27c5226ee8e85cddb2b86815293</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPASz1sTbL_suClaNVCRRDFY8gm0zZld1OTbIsXP7up9exphnnvzQw_hC4pGVNCi5v1eNFDM2aExQEtK1YdoQHlZZqUNE-P0YBEV8LSgp6iM-_XhJCS59kAfc_ajVQB2wWWTTCh14Bth8MKsAPZYO3M1nRLDK3x3kRl9Ho_vY6a75vgsZKN6hsZQGPTYamUdVp2CnCwuLW_SbkFJ5f7bmc6bXd49Dz5uMYthJXV5-hkIRsPF391iN4fpm93T8n85XF2N5knKmU8JFor4BWULFdZTepC8RpYSUkBMoWM5nkKpdSsVDljBQAHniuta1bzgtOcVekQXR32bpz97MEHsba96-JJwbKMZBXlGY0udnApZ713sBAbZ1rpvgQlYs9ZrMWes9hzFgfOMXR7CEH8f2vACa8MRAbaOFBBaGv-i_8AGYKHEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440491841</pqid></control><display><type>article</type><title>Impact of altitude on the real driving emission (RDE) results calculated in accordance to moving averaging window (MAW) method</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Yachao ; Ge, Yunshan ; Wang, Junfang ; Wang, Xin ; Yin, Hang ; Hao, Lijun ; Tan, Jianwei</creator><creatorcontrib>Wang, Yachao ; Ge, Yunshan ; Wang, Junfang ; Wang, Xin ; Yin, Hang ; Hao, Lijun ; Tan, Jianwei</creatorcontrib><description>Over half of the high altitude RDE tests failed to pass trip validity verification. To find out the reason and proper solution, vehicles were tested over The Worldwide harmonized Light vehicles Test Cycles (WLTC)/RDE at various altitudes and RDE tests were calculated using different WLTC reference data. Generally, the higher the altitude, the lower the vehicle CO2 emission and CO2 emission of naturally aspirated test vehicle has a linear correlation with altitudes: every 1000 m the altitude rise, WLTC CO2 emission will decrease 5.31%. The reasons for urban trip validity verification failure are the intensity of test cycles, different calculation methods and lower air resistance at high altitude, while for rural/motorway trip validity verification failure, lower air resistance is the only reason. Both high altitude reference data and sea level reference data with coefficients are plausible for high altitude RDE calculation. At 2400 m, the coefficients are 0.98, 0.91 and 0.86 for urban, rural and motorway respectively, but the calculation of the coefficients needs to be verified by more study. No correlation was found between reference data and RDE results.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2020.117929</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Altitude ; Carbon dioxide ; Carbon dioxide emissions ; CLTC ; CO2 emission ; Coefficients ; Correlation analysis ; Emission analysis ; High altitude ; Highways ; Light duty vehicles ; Mathematical analysis ; MAW ; RDE ; Sea level ; Test vehicles ; Validity ; Vehicle emissions ; Vehicles ; Verification ; WLTC</subject><ispartof>Fuel (Guildford), 2020-10, Vol.277, p.117929, Article 117929</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-ddce89e725c4b0b6c8be27106ea3e41553e7ad27c5226ee8e85cddb2b86815293</citedby><cites>FETCH-LOGICAL-c328t-ddce89e725c4b0b6c8be27106ea3e41553e7ad27c5226ee8e85cddb2b86815293</cites><orcidid>0000-0002-4483-5830 ; 0000-0002-9993-8028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2020.117929$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Yachao</creatorcontrib><creatorcontrib>Ge, Yunshan</creatorcontrib><creatorcontrib>Wang, Junfang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Yin, Hang</creatorcontrib><creatorcontrib>Hao, Lijun</creatorcontrib><creatorcontrib>Tan, Jianwei</creatorcontrib><title>Impact of altitude on the real driving emission (RDE) results calculated in accordance to moving averaging window (MAW) method</title><title>Fuel (Guildford)</title><description>Over half of the high altitude RDE tests failed to pass trip validity verification. To find out the reason and proper solution, vehicles were tested over The Worldwide harmonized Light vehicles Test Cycles (WLTC)/RDE at various altitudes and RDE tests were calculated using different WLTC reference data. Generally, the higher the altitude, the lower the vehicle CO2 emission and CO2 emission of naturally aspirated test vehicle has a linear correlation with altitudes: every 1000 m the altitude rise, WLTC CO2 emission will decrease 5.31%. The reasons for urban trip validity verification failure are the intensity of test cycles, different calculation methods and lower air resistance at high altitude, while for rural/motorway trip validity verification failure, lower air resistance is the only reason. Both high altitude reference data and sea level reference data with coefficients are plausible for high altitude RDE calculation. At 2400 m, the coefficients are 0.98, 0.91 and 0.86 for urban, rural and motorway respectively, but the calculation of the coefficients needs to be verified by more study. No correlation was found between reference data and RDE results.</description><subject>Altitude</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>CLTC</subject><subject>CO2 emission</subject><subject>Coefficients</subject><subject>Correlation analysis</subject><subject>Emission analysis</subject><subject>High altitude</subject><subject>Highways</subject><subject>Light duty vehicles</subject><subject>Mathematical analysis</subject><subject>MAW</subject><subject>RDE</subject><subject>Sea level</subject><subject>Test vehicles</subject><subject>Validity</subject><subject>Vehicle emissions</subject><subject>Vehicles</subject><subject>Verification</subject><subject>WLTC</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPASz1sTbL_suClaNVCRRDFY8gm0zZld1OTbIsXP7up9exphnnvzQw_hC4pGVNCi5v1eNFDM2aExQEtK1YdoQHlZZqUNE-P0YBEV8LSgp6iM-_XhJCS59kAfc_ajVQB2wWWTTCh14Bth8MKsAPZYO3M1nRLDK3x3kRl9Ho_vY6a75vgsZKN6hsZQGPTYamUdVp2CnCwuLW_SbkFJ5f7bmc6bXd49Dz5uMYthJXV5-hkIRsPF391iN4fpm93T8n85XF2N5knKmU8JFor4BWULFdZTepC8RpYSUkBMoWM5nkKpdSsVDljBQAHniuta1bzgtOcVekQXR32bpz97MEHsba96-JJwbKMZBXlGY0udnApZ713sBAbZ1rpvgQlYs9ZrMWes9hzFgfOMXR7CEH8f2vACa8MRAbaOFBBaGv-i_8AGYKHEQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Wang, Yachao</creator><creator>Ge, Yunshan</creator><creator>Wang, Junfang</creator><creator>Wang, Xin</creator><creator>Yin, Hang</creator><creator>Hao, Lijun</creator><creator>Tan, Jianwei</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4483-5830</orcidid><orcidid>https://orcid.org/0000-0002-9993-8028</orcidid></search><sort><creationdate>20201001</creationdate><title>Impact of altitude on the real driving emission (RDE) results calculated in accordance to moving averaging window (MAW) method</title><author>Wang, Yachao ; Ge, Yunshan ; Wang, Junfang ; Wang, Xin ; Yin, Hang ; Hao, Lijun ; Tan, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-ddce89e725c4b0b6c8be27106ea3e41553e7ad27c5226ee8e85cddb2b86815293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Altitude</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>CLTC</topic><topic>CO2 emission</topic><topic>Coefficients</topic><topic>Correlation analysis</topic><topic>Emission analysis</topic><topic>High altitude</topic><topic>Highways</topic><topic>Light duty vehicles</topic><topic>Mathematical analysis</topic><topic>MAW</topic><topic>RDE</topic><topic>Sea level</topic><topic>Test vehicles</topic><topic>Validity</topic><topic>Vehicle emissions</topic><topic>Vehicles</topic><topic>Verification</topic><topic>WLTC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yachao</creatorcontrib><creatorcontrib>Ge, Yunshan</creatorcontrib><creatorcontrib>Wang, Junfang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Yin, Hang</creatorcontrib><creatorcontrib>Hao, Lijun</creatorcontrib><creatorcontrib>Tan, Jianwei</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yachao</au><au>Ge, Yunshan</au><au>Wang, Junfang</au><au>Wang, Xin</au><au>Yin, Hang</au><au>Hao, Lijun</au><au>Tan, Jianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of altitude on the real driving emission (RDE) results calculated in accordance to moving averaging window (MAW) method</atitle><jtitle>Fuel (Guildford)</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>277</volume><spage>117929</spage><pages>117929-</pages><artnum>117929</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Over half of the high altitude RDE tests failed to pass trip validity verification. To find out the reason and proper solution, vehicles were tested over The Worldwide harmonized Light vehicles Test Cycles (WLTC)/RDE at various altitudes and RDE tests were calculated using different WLTC reference data. Generally, the higher the altitude, the lower the vehicle CO2 emission and CO2 emission of naturally aspirated test vehicle has a linear correlation with altitudes: every 1000 m the altitude rise, WLTC CO2 emission will decrease 5.31%. The reasons for urban trip validity verification failure are the intensity of test cycles, different calculation methods and lower air resistance at high altitude, while for rural/motorway trip validity verification failure, lower air resistance is the only reason. Both high altitude reference data and sea level reference data with coefficients are plausible for high altitude RDE calculation. At 2400 m, the coefficients are 0.98, 0.91 and 0.86 for urban, rural and motorway respectively, but the calculation of the coefficients needs to be verified by more study. No correlation was found between reference data and RDE results.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2020.117929</doi><orcidid>https://orcid.org/0000-0002-4483-5830</orcidid><orcidid>https://orcid.org/0000-0002-9993-8028</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2020-10, Vol.277, p.117929, Article 117929 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2440491841 |
source | Access via ScienceDirect (Elsevier) |
subjects | Altitude Carbon dioxide Carbon dioxide emissions CLTC CO2 emission Coefficients Correlation analysis Emission analysis High altitude Highways Light duty vehicles Mathematical analysis MAW RDE Sea level Test vehicles Validity Vehicle emissions Vehicles Verification WLTC |
title | Impact of altitude on the real driving emission (RDE) results calculated in accordance to moving averaging window (MAW) method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A18%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20altitude%20on%20the%20real%20driving%20emission%20(RDE)%20results%20calculated%20in%20accordance%20to%20moving%20averaging%20window%20(MAW)%20method&rft.jtitle=Fuel%20(Guildford)&rft.au=Wang,%20Yachao&rft.date=2020-10-01&rft.volume=277&rft.spage=117929&rft.pages=117929-&rft.artnum=117929&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2020.117929&rft_dat=%3Cproquest_cross%3E2440491841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440491841&rft_id=info:pmid/&rft_els_id=S001623612030925X&rfr_iscdi=true |