Dynamic mode decomposition for the stability analysis of the Molten Salt Fast Reactor core
•Dynamic Mode Decomposition (DMD) is employed to analyse a fast MSFR transient.•A previously developed OpenFOAM multiphysics model is used for full order simulation.•DMD model is used for stability and dynamical analysis of the original MSFR model.•A preliminary sensitivity analysis is performed to...
Gespeichert in:
Veröffentlicht in: | Nuclear engineering and design 2020-06, Vol.362, p.1-11, Article 110529 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Nuclear engineering and design |
container_volume | 362 |
creator | Di Ronco, Andrea Introini, Carolina Cervi, Eric Lorenzi, Stefano Jeong, Yeong Shin Seo, Seok Bin Bang, In Cheol Giacobbo, Francesca Cammi, Antonio |
description | •Dynamic Mode Decomposition (DMD) is employed to analyse a fast MSFR transient.•A previously developed OpenFOAM multiphysics model is used for full order simulation.•DMD model is used for stability and dynamical analysis of the original MSFR model.•A preliminary sensitivity analysis is performed to assess DMD method capabilities.
The study of innovative nuclear reactors involves the use of increasingly complex numerical models. While such models provide a high-fidelity description of many non-linear coupled phenomena, they are not suited for many-query tasks such as design optimisation, uncertainty quantification, stability analysis or parameter identification due to the required computational effort. For this reason, a variety of techniques have been employed to reduce the complexity and surrogate the response of large nuclear systems. One example is the dynamic mode decomposition (DMD), a data-driven method which builds a low-dimensional eigenvalue-eigenvector representation of the underlying model from numerical data, and allows for non-intrusive analyses of the dynamical properties of the system without knowledge of the model itself. In this work, DMD is applied to the study of a free-dynamics fast transient of the Molten Salt Fast Reactor (MSFR), following a variation of the heat transfer coefficient. The numerical data is provided by a multiphysics model developed using the open-source CFD toolkit OpenFOAM. The aim of this work is to demonstrate the applicability of DMD to the study of large next-generation nuclear systems such as the MSFR. The results show the capabilities of DMD to extract and surrogate the dynamics of the MSFR following perturbation, including the initial non-linear dynamics and the final steady-state. Different values of parameters relevant to the construction of DMD models are tested, to provide some insights on the sensitivity of the method to the selection of the numerical data set and to the size of the reduced model. |
doi_str_mv | 10.1016/j.nucengdes.2020.110529 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440490830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549320300248</els_id><sourcerecordid>2440490830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-100ead7515e151ad415c12e773df3a2c501610bea2a864f8c401943cd6115a6c3</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWKu_wYDPWye33e5jqVeoCF5AfAlpMqsp201NUqH_3q0VH3VeBmbOGeZ8hJwyGDFg5fli1K0tdm8O04gD76cMFK_3yICNK15Uqn7ZJwMAXhdK1uKQHKW0gG3VfEBeLzadWXpLl8EhdWjDchWSzz50tAmR5nekKZu5b33eUNOZdpN8oqH53tyFNmNHH02b6ZVJmT6gsbm32RDxmBw0pk148tOH5Pnq8ml6U8zur2-nk1lhpahywQDQuEoxhUwx4yRTlnGsKuEaYbhVfUgGczTcjEvZjK0EVkthXcmYMqUVQ3K2u7uK4WONKetFWMf-06S5lCBrGAv4WyUAylL0dIak2qlsDClFbPQq-qWJG81Ab3Hrhf7Frbe49Q5375zsnNhH_fQYdbIeO4vOR7RZu-D_vfEFBHyLxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430066349</pqid></control><display><type>article</type><title>Dynamic mode decomposition for the stability analysis of the Molten Salt Fast Reactor core</title><source>Elsevier ScienceDirect Journals</source><creator>Di Ronco, Andrea ; Introini, Carolina ; Cervi, Eric ; Lorenzi, Stefano ; Jeong, Yeong Shin ; Seo, Seok Bin ; Bang, In Cheol ; Giacobbo, Francesca ; Cammi, Antonio</creator><creatorcontrib>Di Ronco, Andrea ; Introini, Carolina ; Cervi, Eric ; Lorenzi, Stefano ; Jeong, Yeong Shin ; Seo, Seok Bin ; Bang, In Cheol ; Giacobbo, Francesca ; Cammi, Antonio</creatorcontrib><description>•Dynamic Mode Decomposition (DMD) is employed to analyse a fast MSFR transient.•A previously developed OpenFOAM multiphysics model is used for full order simulation.•DMD model is used for stability and dynamical analysis of the original MSFR model.•A preliminary sensitivity analysis is performed to assess DMD method capabilities.
The study of innovative nuclear reactors involves the use of increasingly complex numerical models. While such models provide a high-fidelity description of many non-linear coupled phenomena, they are not suited for many-query tasks such as design optimisation, uncertainty quantification, stability analysis or parameter identification due to the required computational effort. For this reason, a variety of techniques have been employed to reduce the complexity and surrogate the response of large nuclear systems. One example is the dynamic mode decomposition (DMD), a data-driven method which builds a low-dimensional eigenvalue-eigenvector representation of the underlying model from numerical data, and allows for non-intrusive analyses of the dynamical properties of the system without knowledge of the model itself. In this work, DMD is applied to the study of a free-dynamics fast transient of the Molten Salt Fast Reactor (MSFR), following a variation of the heat transfer coefficient. The numerical data is provided by a multiphysics model developed using the open-source CFD toolkit OpenFOAM. The aim of this work is to demonstrate the applicability of DMD to the study of large next-generation nuclear systems such as the MSFR. The results show the capabilities of DMD to extract and surrogate the dynamics of the MSFR following perturbation, including the initial non-linear dynamics and the final steady-state. Different values of parameters relevant to the construction of DMD models are tested, to provide some insights on the sensitivity of the method to the selection of the numerical data set and to the size of the reduced model.</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/j.nucengdes.2020.110529</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Coefficient of variation ; Complexity ; Computer applications ; Decomposition ; Decomposition reactions ; Design optimization ; Dynamic mode decomposition ; Dynamic stability ; Dynamical systems ; Eigenvalues ; Eigenvectors ; Fast nuclear reactors ; Freeware ; Heat transfer ; Heat transfer coefficients ; Mathematical models ; Molten salt fast reactor ; Molten salts ; Nonlinear dynamics ; Nuclear reactors ; Numerical models ; Parameter identification ; Parameter uncertainty ; Perturbation ; Reactors ; Reduced order models ; Source code ; Stability analysis ; Toolkits ; Uncertainty analysis</subject><ispartof>Nuclear engineering and design, 2020-06, Vol.362, p.1-11, Article 110529</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV</rights><rights>Copyright Elsevier BV Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-100ead7515e151ad415c12e773df3a2c501610bea2a864f8c401943cd6115a6c3</citedby><cites>FETCH-LOGICAL-c437t-100ead7515e151ad415c12e773df3a2c501610bea2a864f8c401943cd6115a6c3</cites><orcidid>0000-0002-2137-3645 ; 0000-0003-1508-5935 ; 0000-0002-5115-9797 ; 0000-0003-4682-1683 ; 0000-0002-5776-8438 ; 0000-0003-2747-1825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0029549320300248$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Di Ronco, Andrea</creatorcontrib><creatorcontrib>Introini, Carolina</creatorcontrib><creatorcontrib>Cervi, Eric</creatorcontrib><creatorcontrib>Lorenzi, Stefano</creatorcontrib><creatorcontrib>Jeong, Yeong Shin</creatorcontrib><creatorcontrib>Seo, Seok Bin</creatorcontrib><creatorcontrib>Bang, In Cheol</creatorcontrib><creatorcontrib>Giacobbo, Francesca</creatorcontrib><creatorcontrib>Cammi, Antonio</creatorcontrib><title>Dynamic mode decomposition for the stability analysis of the Molten Salt Fast Reactor core</title><title>Nuclear engineering and design</title><description>•Dynamic Mode Decomposition (DMD) is employed to analyse a fast MSFR transient.•A previously developed OpenFOAM multiphysics model is used for full order simulation.•DMD model is used for stability and dynamical analysis of the original MSFR model.•A preliminary sensitivity analysis is performed to assess DMD method capabilities.
The study of innovative nuclear reactors involves the use of increasingly complex numerical models. While such models provide a high-fidelity description of many non-linear coupled phenomena, they are not suited for many-query tasks such as design optimisation, uncertainty quantification, stability analysis or parameter identification due to the required computational effort. For this reason, a variety of techniques have been employed to reduce the complexity and surrogate the response of large nuclear systems. One example is the dynamic mode decomposition (DMD), a data-driven method which builds a low-dimensional eigenvalue-eigenvector representation of the underlying model from numerical data, and allows for non-intrusive analyses of the dynamical properties of the system without knowledge of the model itself. In this work, DMD is applied to the study of a free-dynamics fast transient of the Molten Salt Fast Reactor (MSFR), following a variation of the heat transfer coefficient. The numerical data is provided by a multiphysics model developed using the open-source CFD toolkit OpenFOAM. The aim of this work is to demonstrate the applicability of DMD to the study of large next-generation nuclear systems such as the MSFR. The results show the capabilities of DMD to extract and surrogate the dynamics of the MSFR following perturbation, including the initial non-linear dynamics and the final steady-state. Different values of parameters relevant to the construction of DMD models are tested, to provide some insights on the sensitivity of the method to the selection of the numerical data set and to the size of the reduced model.</description><subject>Coefficient of variation</subject><subject>Complexity</subject><subject>Computer applications</subject><subject>Decomposition</subject><subject>Decomposition reactions</subject><subject>Design optimization</subject><subject>Dynamic mode decomposition</subject><subject>Dynamic stability</subject><subject>Dynamical systems</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Fast nuclear reactors</subject><subject>Freeware</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Mathematical models</subject><subject>Molten salt fast reactor</subject><subject>Molten salts</subject><subject>Nonlinear dynamics</subject><subject>Nuclear reactors</subject><subject>Numerical models</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>Perturbation</subject><subject>Reactors</subject><subject>Reduced order models</subject><subject>Source code</subject><subject>Stability analysis</subject><subject>Toolkits</subject><subject>Uncertainty analysis</subject><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWKu_wYDPWye33e5jqVeoCF5AfAlpMqsp201NUqH_3q0VH3VeBmbOGeZ8hJwyGDFg5fli1K0tdm8O04gD76cMFK_3yICNK15Uqn7ZJwMAXhdK1uKQHKW0gG3VfEBeLzadWXpLl8EhdWjDchWSzz50tAmR5nekKZu5b33eUNOZdpN8oqH53tyFNmNHH02b6ZVJmT6gsbm32RDxmBw0pk148tOH5Pnq8ml6U8zur2-nk1lhpahywQDQuEoxhUwx4yRTlnGsKuEaYbhVfUgGczTcjEvZjK0EVkthXcmYMqUVQ3K2u7uK4WONKetFWMf-06S5lCBrGAv4WyUAylL0dIak2qlsDClFbPQq-qWJG81Ab3Hrhf7Frbe49Q5375zsnNhH_fQYdbIeO4vOR7RZu-D_vfEFBHyLxA</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Di Ronco, Andrea</creator><creator>Introini, Carolina</creator><creator>Cervi, Eric</creator><creator>Lorenzi, Stefano</creator><creator>Jeong, Yeong Shin</creator><creator>Seo, Seok Bin</creator><creator>Bang, In Cheol</creator><creator>Giacobbo, Francesca</creator><creator>Cammi, Antonio</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2137-3645</orcidid><orcidid>https://orcid.org/0000-0003-1508-5935</orcidid><orcidid>https://orcid.org/0000-0002-5115-9797</orcidid><orcidid>https://orcid.org/0000-0003-4682-1683</orcidid><orcidid>https://orcid.org/0000-0002-5776-8438</orcidid><orcidid>https://orcid.org/0000-0003-2747-1825</orcidid></search><sort><creationdate>202006</creationdate><title>Dynamic mode decomposition for the stability analysis of the Molten Salt Fast Reactor core</title><author>Di Ronco, Andrea ; Introini, Carolina ; Cervi, Eric ; Lorenzi, Stefano ; Jeong, Yeong Shin ; Seo, Seok Bin ; Bang, In Cheol ; Giacobbo, Francesca ; Cammi, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-100ead7515e151ad415c12e773df3a2c501610bea2a864f8c401943cd6115a6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coefficient of variation</topic><topic>Complexity</topic><topic>Computer applications</topic><topic>Decomposition</topic><topic>Decomposition reactions</topic><topic>Design optimization</topic><topic>Dynamic mode decomposition</topic><topic>Dynamic stability</topic><topic>Dynamical systems</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Fast nuclear reactors</topic><topic>Freeware</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Mathematical models</topic><topic>Molten salt fast reactor</topic><topic>Molten salts</topic><topic>Nonlinear dynamics</topic><topic>Nuclear reactors</topic><topic>Numerical models</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>Perturbation</topic><topic>Reactors</topic><topic>Reduced order models</topic><topic>Source code</topic><topic>Stability analysis</topic><topic>Toolkits</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Ronco, Andrea</creatorcontrib><creatorcontrib>Introini, Carolina</creatorcontrib><creatorcontrib>Cervi, Eric</creatorcontrib><creatorcontrib>Lorenzi, Stefano</creatorcontrib><creatorcontrib>Jeong, Yeong Shin</creatorcontrib><creatorcontrib>Seo, Seok Bin</creatorcontrib><creatorcontrib>Bang, In Cheol</creatorcontrib><creatorcontrib>Giacobbo, Francesca</creatorcontrib><creatorcontrib>Cammi, Antonio</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Ronco, Andrea</au><au>Introini, Carolina</au><au>Cervi, Eric</au><au>Lorenzi, Stefano</au><au>Jeong, Yeong Shin</au><au>Seo, Seok Bin</au><au>Bang, In Cheol</au><au>Giacobbo, Francesca</au><au>Cammi, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic mode decomposition for the stability analysis of the Molten Salt Fast Reactor core</atitle><jtitle>Nuclear engineering and design</jtitle><date>2020-06</date><risdate>2020</risdate><volume>362</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>110529</artnum><issn>0029-5493</issn><eissn>1872-759X</eissn><abstract>•Dynamic Mode Decomposition (DMD) is employed to analyse a fast MSFR transient.•A previously developed OpenFOAM multiphysics model is used for full order simulation.•DMD model is used for stability and dynamical analysis of the original MSFR model.•A preliminary sensitivity analysis is performed to assess DMD method capabilities.
The study of innovative nuclear reactors involves the use of increasingly complex numerical models. While such models provide a high-fidelity description of many non-linear coupled phenomena, they are not suited for many-query tasks such as design optimisation, uncertainty quantification, stability analysis or parameter identification due to the required computational effort. For this reason, a variety of techniques have been employed to reduce the complexity and surrogate the response of large nuclear systems. One example is the dynamic mode decomposition (DMD), a data-driven method which builds a low-dimensional eigenvalue-eigenvector representation of the underlying model from numerical data, and allows for non-intrusive analyses of the dynamical properties of the system without knowledge of the model itself. In this work, DMD is applied to the study of a free-dynamics fast transient of the Molten Salt Fast Reactor (MSFR), following a variation of the heat transfer coefficient. The numerical data is provided by a multiphysics model developed using the open-source CFD toolkit OpenFOAM. The aim of this work is to demonstrate the applicability of DMD to the study of large next-generation nuclear systems such as the MSFR. The results show the capabilities of DMD to extract and surrogate the dynamics of the MSFR following perturbation, including the initial non-linear dynamics and the final steady-state. Different values of parameters relevant to the construction of DMD models are tested, to provide some insights on the sensitivity of the method to the selection of the numerical data set and to the size of the reduced model.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nucengdes.2020.110529</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2137-3645</orcidid><orcidid>https://orcid.org/0000-0003-1508-5935</orcidid><orcidid>https://orcid.org/0000-0002-5115-9797</orcidid><orcidid>https://orcid.org/0000-0003-4682-1683</orcidid><orcidid>https://orcid.org/0000-0002-5776-8438</orcidid><orcidid>https://orcid.org/0000-0003-2747-1825</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5493 |
ispartof | Nuclear engineering and design, 2020-06, Vol.362, p.1-11, Article 110529 |
issn | 0029-5493 1872-759X |
language | eng |
recordid | cdi_proquest_journals_2440490830 |
source | Elsevier ScienceDirect Journals |
subjects | Coefficient of variation Complexity Computer applications Decomposition Decomposition reactions Design optimization Dynamic mode decomposition Dynamic stability Dynamical systems Eigenvalues Eigenvectors Fast nuclear reactors Freeware Heat transfer Heat transfer coefficients Mathematical models Molten salt fast reactor Molten salts Nonlinear dynamics Nuclear reactors Numerical models Parameter identification Parameter uncertainty Perturbation Reactors Reduced order models Source code Stability analysis Toolkits Uncertainty analysis |
title | Dynamic mode decomposition for the stability analysis of the Molten Salt Fast Reactor core |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20mode%20decomposition%20for%20the%20stability%20analysis%20of%20the%20Molten%20Salt%20Fast%20Reactor%20core&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Di%20Ronco,%20Andrea&rft.date=2020-06&rft.volume=362&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=110529&rft.issn=0029-5493&rft.eissn=1872-759X&rft_id=info:doi/10.1016/j.nucengdes.2020.110529&rft_dat=%3Cproquest_cross%3E2440490830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430066349&rft_id=info:pmid/&rft_els_id=S0029549320300248&rfr_iscdi=true |