Dynamic mode decomposition for the stability analysis of the Molten Salt Fast Reactor core

•Dynamic Mode Decomposition (DMD) is employed to analyse a fast MSFR transient.•A previously developed OpenFOAM multiphysics model is used for full order simulation.•DMD model is used for stability and dynamical analysis of the original MSFR model.•A preliminary sensitivity analysis is performed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and design 2020-06, Vol.362, p.1-11, Article 110529
Hauptverfasser: Di Ronco, Andrea, Introini, Carolina, Cervi, Eric, Lorenzi, Stefano, Jeong, Yeong Shin, Seo, Seok Bin, Bang, In Cheol, Giacobbo, Francesca, Cammi, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Nuclear engineering and design
container_volume 362
creator Di Ronco, Andrea
Introini, Carolina
Cervi, Eric
Lorenzi, Stefano
Jeong, Yeong Shin
Seo, Seok Bin
Bang, In Cheol
Giacobbo, Francesca
Cammi, Antonio
description •Dynamic Mode Decomposition (DMD) is employed to analyse a fast MSFR transient.•A previously developed OpenFOAM multiphysics model is used for full order simulation.•DMD model is used for stability and dynamical analysis of the original MSFR model.•A preliminary sensitivity analysis is performed to assess DMD method capabilities. The study of innovative nuclear reactors involves the use of increasingly complex numerical models. While such models provide a high-fidelity description of many non-linear coupled phenomena, they are not suited for many-query tasks such as design optimisation, uncertainty quantification, stability analysis or parameter identification due to the required computational effort. For this reason, a variety of techniques have been employed to reduce the complexity and surrogate the response of large nuclear systems. One example is the dynamic mode decomposition (DMD), a data-driven method which builds a low-dimensional eigenvalue-eigenvector representation of the underlying model from numerical data, and allows for non-intrusive analyses of the dynamical properties of the system without knowledge of the model itself. In this work, DMD is applied to the study of a free-dynamics fast transient of the Molten Salt Fast Reactor (MSFR), following a variation of the heat transfer coefficient. The numerical data is provided by a multiphysics model developed using the open-source CFD toolkit OpenFOAM. The aim of this work is to demonstrate the applicability of DMD to the study of large next-generation nuclear systems such as the MSFR. The results show the capabilities of DMD to extract and surrogate the dynamics of the MSFR following perturbation, including the initial non-linear dynamics and the final steady-state. Different values of parameters relevant to the construction of DMD models are tested, to provide some insights on the sensitivity of the method to the selection of the numerical data set and to the size of the reduced model.
doi_str_mv 10.1016/j.nucengdes.2020.110529
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440490830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549320300248</els_id><sourcerecordid>2440490830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-100ead7515e151ad415c12e773df3a2c501610bea2a864f8c401943cd6115a6c3</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWKu_wYDPWye33e5jqVeoCF5AfAlpMqsp201NUqH_3q0VH3VeBmbOGeZ8hJwyGDFg5fli1K0tdm8O04gD76cMFK_3yICNK15Uqn7ZJwMAXhdK1uKQHKW0gG3VfEBeLzadWXpLl8EhdWjDchWSzz50tAmR5nekKZu5b33eUNOZdpN8oqH53tyFNmNHH02b6ZVJmT6gsbm32RDxmBw0pk148tOH5Pnq8ml6U8zur2-nk1lhpahywQDQuEoxhUwx4yRTlnGsKuEaYbhVfUgGczTcjEvZjK0EVkthXcmYMqUVQ3K2u7uK4WONKetFWMf-06S5lCBrGAv4WyUAylL0dIak2qlsDClFbPQq-qWJG81Ab3Hrhf7Frbe49Q5375zsnNhH_fQYdbIeO4vOR7RZu-D_vfEFBHyLxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430066349</pqid></control><display><type>article</type><title>Dynamic mode decomposition for the stability analysis of the Molten Salt Fast Reactor core</title><source>Elsevier ScienceDirect Journals</source><creator>Di Ronco, Andrea ; Introini, Carolina ; Cervi, Eric ; Lorenzi, Stefano ; Jeong, Yeong Shin ; Seo, Seok Bin ; Bang, In Cheol ; Giacobbo, Francesca ; Cammi, Antonio</creator><creatorcontrib>Di Ronco, Andrea ; Introini, Carolina ; Cervi, Eric ; Lorenzi, Stefano ; Jeong, Yeong Shin ; Seo, Seok Bin ; Bang, In Cheol ; Giacobbo, Francesca ; Cammi, Antonio</creatorcontrib><description>•Dynamic Mode Decomposition (DMD) is employed to analyse a fast MSFR transient.•A previously developed OpenFOAM multiphysics model is used for full order simulation.•DMD model is used for stability and dynamical analysis of the original MSFR model.•A preliminary sensitivity analysis is performed to assess DMD method capabilities. The study of innovative nuclear reactors involves the use of increasingly complex numerical models. While such models provide a high-fidelity description of many non-linear coupled phenomena, they are not suited for many-query tasks such as design optimisation, uncertainty quantification, stability analysis or parameter identification due to the required computational effort. For this reason, a variety of techniques have been employed to reduce the complexity and surrogate the response of large nuclear systems. One example is the dynamic mode decomposition (DMD), a data-driven method which builds a low-dimensional eigenvalue-eigenvector representation of the underlying model from numerical data, and allows for non-intrusive analyses of the dynamical properties of the system without knowledge of the model itself. In this work, DMD is applied to the study of a free-dynamics fast transient of the Molten Salt Fast Reactor (MSFR), following a variation of the heat transfer coefficient. The numerical data is provided by a multiphysics model developed using the open-source CFD toolkit OpenFOAM. The aim of this work is to demonstrate the applicability of DMD to the study of large next-generation nuclear systems such as the MSFR. The results show the capabilities of DMD to extract and surrogate the dynamics of the MSFR following perturbation, including the initial non-linear dynamics and the final steady-state. Different values of parameters relevant to the construction of DMD models are tested, to provide some insights on the sensitivity of the method to the selection of the numerical data set and to the size of the reduced model.</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/j.nucengdes.2020.110529</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Coefficient of variation ; Complexity ; Computer applications ; Decomposition ; Decomposition reactions ; Design optimization ; Dynamic mode decomposition ; Dynamic stability ; Dynamical systems ; Eigenvalues ; Eigenvectors ; Fast nuclear reactors ; Freeware ; Heat transfer ; Heat transfer coefficients ; Mathematical models ; Molten salt fast reactor ; Molten salts ; Nonlinear dynamics ; Nuclear reactors ; Numerical models ; Parameter identification ; Parameter uncertainty ; Perturbation ; Reactors ; Reduced order models ; Source code ; Stability analysis ; Toolkits ; Uncertainty analysis</subject><ispartof>Nuclear engineering and design, 2020-06, Vol.362, p.1-11, Article 110529</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV</rights><rights>Copyright Elsevier BV Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-100ead7515e151ad415c12e773df3a2c501610bea2a864f8c401943cd6115a6c3</citedby><cites>FETCH-LOGICAL-c437t-100ead7515e151ad415c12e773df3a2c501610bea2a864f8c401943cd6115a6c3</cites><orcidid>0000-0002-2137-3645 ; 0000-0003-1508-5935 ; 0000-0002-5115-9797 ; 0000-0003-4682-1683 ; 0000-0002-5776-8438 ; 0000-0003-2747-1825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0029549320300248$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Di Ronco, Andrea</creatorcontrib><creatorcontrib>Introini, Carolina</creatorcontrib><creatorcontrib>Cervi, Eric</creatorcontrib><creatorcontrib>Lorenzi, Stefano</creatorcontrib><creatorcontrib>Jeong, Yeong Shin</creatorcontrib><creatorcontrib>Seo, Seok Bin</creatorcontrib><creatorcontrib>Bang, In Cheol</creatorcontrib><creatorcontrib>Giacobbo, Francesca</creatorcontrib><creatorcontrib>Cammi, Antonio</creatorcontrib><title>Dynamic mode decomposition for the stability analysis of the Molten Salt Fast Reactor core</title><title>Nuclear engineering and design</title><description>•Dynamic Mode Decomposition (DMD) is employed to analyse a fast MSFR transient.•A previously developed OpenFOAM multiphysics model is used for full order simulation.•DMD model is used for stability and dynamical analysis of the original MSFR model.•A preliminary sensitivity analysis is performed to assess DMD method capabilities. The study of innovative nuclear reactors involves the use of increasingly complex numerical models. While such models provide a high-fidelity description of many non-linear coupled phenomena, they are not suited for many-query tasks such as design optimisation, uncertainty quantification, stability analysis or parameter identification due to the required computational effort. For this reason, a variety of techniques have been employed to reduce the complexity and surrogate the response of large nuclear systems. One example is the dynamic mode decomposition (DMD), a data-driven method which builds a low-dimensional eigenvalue-eigenvector representation of the underlying model from numerical data, and allows for non-intrusive analyses of the dynamical properties of the system without knowledge of the model itself. In this work, DMD is applied to the study of a free-dynamics fast transient of the Molten Salt Fast Reactor (MSFR), following a variation of the heat transfer coefficient. The numerical data is provided by a multiphysics model developed using the open-source CFD toolkit OpenFOAM. The aim of this work is to demonstrate the applicability of DMD to the study of large next-generation nuclear systems such as the MSFR. The results show the capabilities of DMD to extract and surrogate the dynamics of the MSFR following perturbation, including the initial non-linear dynamics and the final steady-state. Different values of parameters relevant to the construction of DMD models are tested, to provide some insights on the sensitivity of the method to the selection of the numerical data set and to the size of the reduced model.</description><subject>Coefficient of variation</subject><subject>Complexity</subject><subject>Computer applications</subject><subject>Decomposition</subject><subject>Decomposition reactions</subject><subject>Design optimization</subject><subject>Dynamic mode decomposition</subject><subject>Dynamic stability</subject><subject>Dynamical systems</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Fast nuclear reactors</subject><subject>Freeware</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Mathematical models</subject><subject>Molten salt fast reactor</subject><subject>Molten salts</subject><subject>Nonlinear dynamics</subject><subject>Nuclear reactors</subject><subject>Numerical models</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>Perturbation</subject><subject>Reactors</subject><subject>Reduced order models</subject><subject>Source code</subject><subject>Stability analysis</subject><subject>Toolkits</subject><subject>Uncertainty analysis</subject><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWKu_wYDPWye33e5jqVeoCF5AfAlpMqsp201NUqH_3q0VH3VeBmbOGeZ8hJwyGDFg5fli1K0tdm8O04gD76cMFK_3yICNK15Uqn7ZJwMAXhdK1uKQHKW0gG3VfEBeLzadWXpLl8EhdWjDchWSzz50tAmR5nekKZu5b33eUNOZdpN8oqH53tyFNmNHH02b6ZVJmT6gsbm32RDxmBw0pk148tOH5Pnq8ml6U8zur2-nk1lhpahywQDQuEoxhUwx4yRTlnGsKuEaYbhVfUgGczTcjEvZjK0EVkthXcmYMqUVQ3K2u7uK4WONKetFWMf-06S5lCBrGAv4WyUAylL0dIak2qlsDClFbPQq-qWJG81Ab3Hrhf7Frbe49Q5375zsnNhH_fQYdbIeO4vOR7RZu-D_vfEFBHyLxA</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Di Ronco, Andrea</creator><creator>Introini, Carolina</creator><creator>Cervi, Eric</creator><creator>Lorenzi, Stefano</creator><creator>Jeong, Yeong Shin</creator><creator>Seo, Seok Bin</creator><creator>Bang, In Cheol</creator><creator>Giacobbo, Francesca</creator><creator>Cammi, Antonio</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2137-3645</orcidid><orcidid>https://orcid.org/0000-0003-1508-5935</orcidid><orcidid>https://orcid.org/0000-0002-5115-9797</orcidid><orcidid>https://orcid.org/0000-0003-4682-1683</orcidid><orcidid>https://orcid.org/0000-0002-5776-8438</orcidid><orcidid>https://orcid.org/0000-0003-2747-1825</orcidid></search><sort><creationdate>202006</creationdate><title>Dynamic mode decomposition for the stability analysis of the Molten Salt Fast Reactor core</title><author>Di Ronco, Andrea ; Introini, Carolina ; Cervi, Eric ; Lorenzi, Stefano ; Jeong, Yeong Shin ; Seo, Seok Bin ; Bang, In Cheol ; Giacobbo, Francesca ; Cammi, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-100ead7515e151ad415c12e773df3a2c501610bea2a864f8c401943cd6115a6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coefficient of variation</topic><topic>Complexity</topic><topic>Computer applications</topic><topic>Decomposition</topic><topic>Decomposition reactions</topic><topic>Design optimization</topic><topic>Dynamic mode decomposition</topic><topic>Dynamic stability</topic><topic>Dynamical systems</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Fast nuclear reactors</topic><topic>Freeware</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Mathematical models</topic><topic>Molten salt fast reactor</topic><topic>Molten salts</topic><topic>Nonlinear dynamics</topic><topic>Nuclear reactors</topic><topic>Numerical models</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>Perturbation</topic><topic>Reactors</topic><topic>Reduced order models</topic><topic>Source code</topic><topic>Stability analysis</topic><topic>Toolkits</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Ronco, Andrea</creatorcontrib><creatorcontrib>Introini, Carolina</creatorcontrib><creatorcontrib>Cervi, Eric</creatorcontrib><creatorcontrib>Lorenzi, Stefano</creatorcontrib><creatorcontrib>Jeong, Yeong Shin</creatorcontrib><creatorcontrib>Seo, Seok Bin</creatorcontrib><creatorcontrib>Bang, In Cheol</creatorcontrib><creatorcontrib>Giacobbo, Francesca</creatorcontrib><creatorcontrib>Cammi, Antonio</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Ronco, Andrea</au><au>Introini, Carolina</au><au>Cervi, Eric</au><au>Lorenzi, Stefano</au><au>Jeong, Yeong Shin</au><au>Seo, Seok Bin</au><au>Bang, In Cheol</au><au>Giacobbo, Francesca</au><au>Cammi, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic mode decomposition for the stability analysis of the Molten Salt Fast Reactor core</atitle><jtitle>Nuclear engineering and design</jtitle><date>2020-06</date><risdate>2020</risdate><volume>362</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>110529</artnum><issn>0029-5493</issn><eissn>1872-759X</eissn><abstract>•Dynamic Mode Decomposition (DMD) is employed to analyse a fast MSFR transient.•A previously developed OpenFOAM multiphysics model is used for full order simulation.•DMD model is used for stability and dynamical analysis of the original MSFR model.•A preliminary sensitivity analysis is performed to assess DMD method capabilities. The study of innovative nuclear reactors involves the use of increasingly complex numerical models. While such models provide a high-fidelity description of many non-linear coupled phenomena, they are not suited for many-query tasks such as design optimisation, uncertainty quantification, stability analysis or parameter identification due to the required computational effort. For this reason, a variety of techniques have been employed to reduce the complexity and surrogate the response of large nuclear systems. One example is the dynamic mode decomposition (DMD), a data-driven method which builds a low-dimensional eigenvalue-eigenvector representation of the underlying model from numerical data, and allows for non-intrusive analyses of the dynamical properties of the system without knowledge of the model itself. In this work, DMD is applied to the study of a free-dynamics fast transient of the Molten Salt Fast Reactor (MSFR), following a variation of the heat transfer coefficient. The numerical data is provided by a multiphysics model developed using the open-source CFD toolkit OpenFOAM. The aim of this work is to demonstrate the applicability of DMD to the study of large next-generation nuclear systems such as the MSFR. The results show the capabilities of DMD to extract and surrogate the dynamics of the MSFR following perturbation, including the initial non-linear dynamics and the final steady-state. Different values of parameters relevant to the construction of DMD models are tested, to provide some insights on the sensitivity of the method to the selection of the numerical data set and to the size of the reduced model.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nucengdes.2020.110529</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2137-3645</orcidid><orcidid>https://orcid.org/0000-0003-1508-5935</orcidid><orcidid>https://orcid.org/0000-0002-5115-9797</orcidid><orcidid>https://orcid.org/0000-0003-4682-1683</orcidid><orcidid>https://orcid.org/0000-0002-5776-8438</orcidid><orcidid>https://orcid.org/0000-0003-2747-1825</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5493
ispartof Nuclear engineering and design, 2020-06, Vol.362, p.1-11, Article 110529
issn 0029-5493
1872-759X
language eng
recordid cdi_proquest_journals_2440490830
source Elsevier ScienceDirect Journals
subjects Coefficient of variation
Complexity
Computer applications
Decomposition
Decomposition reactions
Design optimization
Dynamic mode decomposition
Dynamic stability
Dynamical systems
Eigenvalues
Eigenvectors
Fast nuclear reactors
Freeware
Heat transfer
Heat transfer coefficients
Mathematical models
Molten salt fast reactor
Molten salts
Nonlinear dynamics
Nuclear reactors
Numerical models
Parameter identification
Parameter uncertainty
Perturbation
Reactors
Reduced order models
Source code
Stability analysis
Toolkits
Uncertainty analysis
title Dynamic mode decomposition for the stability analysis of the Molten Salt Fast Reactor core
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20mode%20decomposition%20for%20the%20stability%20analysis%20of%20the%20Molten%20Salt%20Fast%20Reactor%20core&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Di%20Ronco,%20Andrea&rft.date=2020-06&rft.volume=362&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=110529&rft.issn=0029-5493&rft.eissn=1872-759X&rft_id=info:doi/10.1016/j.nucengdes.2020.110529&rft_dat=%3Cproquest_cross%3E2440490830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430066349&rft_id=info:pmid/&rft_els_id=S0029549320300248&rfr_iscdi=true