Fabrication, flame retardancy and physical properties of phosphorus containing porous organic polymers/epoxy resin composites
Two kinds of phosphorus containing porous organic polymers (PPOPs) were synthesized through the Friedel-Crafts reaction between triphenylphosphine oxide and 4,4′-bis(chloromethyl)-1,1′-biphenyl (PPOP1) or α,α′-dibromo-p-xylene (PPOP2), where PPOPs were applied to improve the flame retardancy and phy...
Gespeichert in:
Veröffentlicht in: | Polymer degradation and stability 2020-06, Vol.176, p.109159, Article 109159 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109159 |
container_title | Polymer degradation and stability |
container_volume | 176 |
creator | Miao, Junshuai Fang, Yunzhi Yang, Xingwen Zhu, Yun Hu, Aiguo Wang, Guiyou |
description | Two kinds of phosphorus containing porous organic polymers (PPOPs) were synthesized through the Friedel-Crafts reaction between triphenylphosphine oxide and 4,4′-bis(chloromethyl)-1,1′-biphenyl (PPOP1) or α,α′-dibromo-p-xylene (PPOP2), where PPOPs were applied to improve the flame retardancy and physical properties of epoxy resin (EP). The PPOPs show high thermal stability, poor combustion properties, and large BET specific surface areas. The average pore diameter is 3.7 nm and 3.5 nm for PPOP1 and PPOP2, respectively. Monomers of EP can effectively diffuse into the pores of PPOPs, and PPOP/EP composites were further prepared by in situ polymerization. With only 1 wt% PPOP1 loaded into the composites, Tg values increase from 114 °C to 117 °C, while tensile strength and flexural modulus increase by 32% and 21%, respectively, resulting from the rigid skeleton of PPOPs and the interpenetrating polymer network structure in the composites. The dielectric constant and loss also decrease with the addition of PPOPs into the EP matrix. Cone calorimeter experiments show that PPOPs exert excellent flame retardancy on the EP matrix. In comparison with pure EP, when loading 5 wt% PPOP2, peak heat release rate, total heat release and total smoke production decrease by 26%, 48% and 39%, respectively. The PPOP/EP composites show higher tensile strength, Tg and flame retardancy than the samples prepared by simply blending the same amount of PPOPs into the EP matrix. Our research provides a promising strategy to prepare flame retardant EP composites with high performances.
•Two kinds of phosphorus containing porous organic polymers (PPOPs) as flame retardants were synthesized.•PPOP/EP composites were prepared by in situ polymerization to form the structure of interpenetrating polymer network.•PPOPs showed excellent flame retardancy and smoke suppression to the EP matrix.•PPOPs improved the mechanical and dielectric properties of the EP matrix. |
doi_str_mv | 10.1016/j.polymdegradstab.2020.109159 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440490645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391020300914</els_id><sourcerecordid>2440490645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-e22eae6bd347485bebd5f0f6aa2f715ceb193d036eacf8f5488e9230d21b34c43</originalsourceid><addsrcrecordid>eNqNUE1PGzEQtaoiNYX-B0tVb2zw1252DxwQKhQJiQucLa89Th0l9jJ2UPfAf8chPXFipNFIb968mXmE_OJsyRnvLjbLKW3nnYM1GpeLGZeCiUNv4O3whSx4v5KNkIJ_JQvGFW_kwNk38j3nDauhWr4grzdmxGBNCSmeU781O6AIxaAz0c7UREenv3OujC2dME2AJUCmyVc45Zq4z9SmWEyIIa7plDBVJOHaxGDp-4GA-QKm9G-uyjnESt9NKYcC-YyceLPN8ON_PSVPN78fr_809w-3d9dX942VHS8NCAEGutFJtVJ9O8LoWs98Z4zwK95aGPkgHZMdGOt736q-h0FI5gQfpbJKnpKfR936wvMectGbtMdYV2qhFFMD61RbWZdHlsWUM4LXE4adwVlzpg-O643-4Lg-OK6Pjtf52-M81FdeAqDONkC04AKCLdql8EmlN7zGl_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440490645</pqid></control><display><type>article</type><title>Fabrication, flame retardancy and physical properties of phosphorus containing porous organic polymers/epoxy resin composites</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Miao, Junshuai ; Fang, Yunzhi ; Yang, Xingwen ; Zhu, Yun ; Hu, Aiguo ; Wang, Guiyou</creator><creatorcontrib>Miao, Junshuai ; Fang, Yunzhi ; Yang, Xingwen ; Zhu, Yun ; Hu, Aiguo ; Wang, Guiyou</creatorcontrib><description>Two kinds of phosphorus containing porous organic polymers (PPOPs) were synthesized through the Friedel-Crafts reaction between triphenylphosphine oxide and 4,4′-bis(chloromethyl)-1,1′-biphenyl (PPOP1) or α,α′-dibromo-p-xylene (PPOP2), where PPOPs were applied to improve the flame retardancy and physical properties of epoxy resin (EP). The PPOPs show high thermal stability, poor combustion properties, and large BET specific surface areas. The average pore diameter is 3.7 nm and 3.5 nm for PPOP1 and PPOP2, respectively. Monomers of EP can effectively diffuse into the pores of PPOPs, and PPOP/EP composites were further prepared by in situ polymerization. With only 1 wt% PPOP1 loaded into the composites, Tg values increase from 114 °C to 117 °C, while tensile strength and flexural modulus increase by 32% and 21%, respectively, resulting from the rigid skeleton of PPOPs and the interpenetrating polymer network structure in the composites. The dielectric constant and loss also decrease with the addition of PPOPs into the EP matrix. Cone calorimeter experiments show that PPOPs exert excellent flame retardancy on the EP matrix. In comparison with pure EP, when loading 5 wt% PPOP2, peak heat release rate, total heat release and total smoke production decrease by 26%, 48% and 39%, respectively. The PPOP/EP composites show higher tensile strength, Tg and flame retardancy than the samples prepared by simply blending the same amount of PPOPs into the EP matrix. Our research provides a promising strategy to prepare flame retardant EP composites with high performances.
•Two kinds of phosphorus containing porous organic polymers (PPOPs) as flame retardants were synthesized.•PPOP/EP composites were prepared by in situ polymerization to form the structure of interpenetrating polymer network.•PPOPs showed excellent flame retardancy and smoke suppression to the EP matrix.•PPOPs improved the mechanical and dielectric properties of the EP matrix.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2020.109159</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Cone calorimeters ; Enthalpy ; Epoxy resin ; Epoxy resins ; Flame retardancy ; Flame retardants ; Friedel-Crafts reaction ; Heat release rate ; In situ polymerization ; Interpenetrating networks ; Mechanical property ; Modulus of rupture in bending ; Particulate composites ; Phosphorus ; Physical properties ; Polymer matrix composites ; Polymers ; Porous organic polymers ; Tensile strength ; Thermal stability ; Xylene</subject><ispartof>Polymer degradation and stability, 2020-06, Vol.176, p.109159, Article 109159</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-e22eae6bd347485bebd5f0f6aa2f715ceb193d036eacf8f5488e9230d21b34c43</citedby><cites>FETCH-LOGICAL-c361t-e22eae6bd347485bebd5f0f6aa2f715ceb193d036eacf8f5488e9230d21b34c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymdegradstab.2020.109159$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Miao, Junshuai</creatorcontrib><creatorcontrib>Fang, Yunzhi</creatorcontrib><creatorcontrib>Yang, Xingwen</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><creatorcontrib>Hu, Aiguo</creatorcontrib><creatorcontrib>Wang, Guiyou</creatorcontrib><title>Fabrication, flame retardancy and physical properties of phosphorus containing porous organic polymers/epoxy resin composites</title><title>Polymer degradation and stability</title><description>Two kinds of phosphorus containing porous organic polymers (PPOPs) were synthesized through the Friedel-Crafts reaction between triphenylphosphine oxide and 4,4′-bis(chloromethyl)-1,1′-biphenyl (PPOP1) or α,α′-dibromo-p-xylene (PPOP2), where PPOPs were applied to improve the flame retardancy and physical properties of epoxy resin (EP). The PPOPs show high thermal stability, poor combustion properties, and large BET specific surface areas. The average pore diameter is 3.7 nm and 3.5 nm for PPOP1 and PPOP2, respectively. Monomers of EP can effectively diffuse into the pores of PPOPs, and PPOP/EP composites were further prepared by in situ polymerization. With only 1 wt% PPOP1 loaded into the composites, Tg values increase from 114 °C to 117 °C, while tensile strength and flexural modulus increase by 32% and 21%, respectively, resulting from the rigid skeleton of PPOPs and the interpenetrating polymer network structure in the composites. The dielectric constant and loss also decrease with the addition of PPOPs into the EP matrix. Cone calorimeter experiments show that PPOPs exert excellent flame retardancy on the EP matrix. In comparison with pure EP, when loading 5 wt% PPOP2, peak heat release rate, total heat release and total smoke production decrease by 26%, 48% and 39%, respectively. The PPOP/EP composites show higher tensile strength, Tg and flame retardancy than the samples prepared by simply blending the same amount of PPOPs into the EP matrix. Our research provides a promising strategy to prepare flame retardant EP composites with high performances.
•Two kinds of phosphorus containing porous organic polymers (PPOPs) as flame retardants were synthesized.•PPOP/EP composites were prepared by in situ polymerization to form the structure of interpenetrating polymer network.•PPOPs showed excellent flame retardancy and smoke suppression to the EP matrix.•PPOPs improved the mechanical and dielectric properties of the EP matrix.</description><subject>Cone calorimeters</subject><subject>Enthalpy</subject><subject>Epoxy resin</subject><subject>Epoxy resins</subject><subject>Flame retardancy</subject><subject>Flame retardants</subject><subject>Friedel-Crafts reaction</subject><subject>Heat release rate</subject><subject>In situ polymerization</subject><subject>Interpenetrating networks</subject><subject>Mechanical property</subject><subject>Modulus of rupture in bending</subject><subject>Particulate composites</subject><subject>Phosphorus</subject><subject>Physical properties</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Porous organic polymers</subject><subject>Tensile strength</subject><subject>Thermal stability</subject><subject>Xylene</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNUE1PGzEQtaoiNYX-B0tVb2zw1252DxwQKhQJiQucLa89Th0l9jJ2UPfAf8chPXFipNFIb968mXmE_OJsyRnvLjbLKW3nnYM1GpeLGZeCiUNv4O3whSx4v5KNkIJ_JQvGFW_kwNk38j3nDauhWr4grzdmxGBNCSmeU781O6AIxaAz0c7UREenv3OujC2dME2AJUCmyVc45Zq4z9SmWEyIIa7plDBVJOHaxGDp-4GA-QKm9G-uyjnESt9NKYcC-YyceLPN8ON_PSVPN78fr_809w-3d9dX942VHS8NCAEGutFJtVJ9O8LoWs98Z4zwK95aGPkgHZMdGOt736q-h0FI5gQfpbJKnpKfR936wvMectGbtMdYV2qhFFMD61RbWZdHlsWUM4LXE4adwVlzpg-O643-4Lg-OK6Pjtf52-M81FdeAqDONkC04AKCLdql8EmlN7zGl_s</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Miao, Junshuai</creator><creator>Fang, Yunzhi</creator><creator>Yang, Xingwen</creator><creator>Zhu, Yun</creator><creator>Hu, Aiguo</creator><creator>Wang, Guiyou</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202006</creationdate><title>Fabrication, flame retardancy and physical properties of phosphorus containing porous organic polymers/epoxy resin composites</title><author>Miao, Junshuai ; Fang, Yunzhi ; Yang, Xingwen ; Zhu, Yun ; Hu, Aiguo ; Wang, Guiyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-e22eae6bd347485bebd5f0f6aa2f715ceb193d036eacf8f5488e9230d21b34c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cone calorimeters</topic><topic>Enthalpy</topic><topic>Epoxy resin</topic><topic>Epoxy resins</topic><topic>Flame retardancy</topic><topic>Flame retardants</topic><topic>Friedel-Crafts reaction</topic><topic>Heat release rate</topic><topic>In situ polymerization</topic><topic>Interpenetrating networks</topic><topic>Mechanical property</topic><topic>Modulus of rupture in bending</topic><topic>Particulate composites</topic><topic>Phosphorus</topic><topic>Physical properties</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Porous organic polymers</topic><topic>Tensile strength</topic><topic>Thermal stability</topic><topic>Xylene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Junshuai</creatorcontrib><creatorcontrib>Fang, Yunzhi</creatorcontrib><creatorcontrib>Yang, Xingwen</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><creatorcontrib>Hu, Aiguo</creatorcontrib><creatorcontrib>Wang, Guiyou</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Junshuai</au><au>Fang, Yunzhi</au><au>Yang, Xingwen</au><au>Zhu, Yun</au><au>Hu, Aiguo</au><au>Wang, Guiyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication, flame retardancy and physical properties of phosphorus containing porous organic polymers/epoxy resin composites</atitle><jtitle>Polymer degradation and stability</jtitle><date>2020-06</date><risdate>2020</risdate><volume>176</volume><spage>109159</spage><pages>109159-</pages><artnum>109159</artnum><issn>0141-3910</issn><eissn>1873-2321</eissn><abstract>Two kinds of phosphorus containing porous organic polymers (PPOPs) were synthesized through the Friedel-Crafts reaction between triphenylphosphine oxide and 4,4′-bis(chloromethyl)-1,1′-biphenyl (PPOP1) or α,α′-dibromo-p-xylene (PPOP2), where PPOPs were applied to improve the flame retardancy and physical properties of epoxy resin (EP). The PPOPs show high thermal stability, poor combustion properties, and large BET specific surface areas. The average pore diameter is 3.7 nm and 3.5 nm for PPOP1 and PPOP2, respectively. Monomers of EP can effectively diffuse into the pores of PPOPs, and PPOP/EP composites were further prepared by in situ polymerization. With only 1 wt% PPOP1 loaded into the composites, Tg values increase from 114 °C to 117 °C, while tensile strength and flexural modulus increase by 32% and 21%, respectively, resulting from the rigid skeleton of PPOPs and the interpenetrating polymer network structure in the composites. The dielectric constant and loss also decrease with the addition of PPOPs into the EP matrix. Cone calorimeter experiments show that PPOPs exert excellent flame retardancy on the EP matrix. In comparison with pure EP, when loading 5 wt% PPOP2, peak heat release rate, total heat release and total smoke production decrease by 26%, 48% and 39%, respectively. The PPOP/EP composites show higher tensile strength, Tg and flame retardancy than the samples prepared by simply blending the same amount of PPOPs into the EP matrix. Our research provides a promising strategy to prepare flame retardant EP composites with high performances.
•Two kinds of phosphorus containing porous organic polymers (PPOPs) as flame retardants were synthesized.•PPOP/EP composites were prepared by in situ polymerization to form the structure of interpenetrating polymer network.•PPOPs showed excellent flame retardancy and smoke suppression to the EP matrix.•PPOPs improved the mechanical and dielectric properties of the EP matrix.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2020.109159</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-3910 |
ispartof | Polymer degradation and stability, 2020-06, Vol.176, p.109159, Article 109159 |
issn | 0141-3910 1873-2321 |
language | eng |
recordid | cdi_proquest_journals_2440490645 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Cone calorimeters Enthalpy Epoxy resin Epoxy resins Flame retardancy Flame retardants Friedel-Crafts reaction Heat release rate In situ polymerization Interpenetrating networks Mechanical property Modulus of rupture in bending Particulate composites Phosphorus Physical properties Polymer matrix composites Polymers Porous organic polymers Tensile strength Thermal stability Xylene |
title | Fabrication, flame retardancy and physical properties of phosphorus containing porous organic polymers/epoxy resin composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication,%20flame%20retardancy%20and%20physical%20properties%20of%20phosphorus%20containing%20porous%20organic%20polymers/epoxy%20resin%20composites&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=Miao,%20Junshuai&rft.date=2020-06&rft.volume=176&rft.spage=109159&rft.pages=109159-&rft.artnum=109159&rft.issn=0141-3910&rft.eissn=1873-2321&rft_id=info:doi/10.1016/j.polymdegradstab.2020.109159&rft_dat=%3Cproquest_cross%3E2440490645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440490645&rft_id=info:pmid/&rft_els_id=S0141391020300914&rfr_iscdi=true |