Fabrication, flame retardancy and physical properties of phosphorus containing porous organic polymers/epoxy resin composites

Two kinds of phosphorus containing porous organic polymers (PPOPs) were synthesized through the Friedel-Crafts reaction between triphenylphosphine oxide and 4,4′-bis(chloromethyl)-1,1′-biphenyl (PPOP1) or α,α′-dibromo-p-xylene (PPOP2), where PPOPs were applied to improve the flame retardancy and phy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer degradation and stability 2020-06, Vol.176, p.109159, Article 109159
Hauptverfasser: Miao, Junshuai, Fang, Yunzhi, Yang, Xingwen, Zhu, Yun, Hu, Aiguo, Wang, Guiyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109159
container_title Polymer degradation and stability
container_volume 176
creator Miao, Junshuai
Fang, Yunzhi
Yang, Xingwen
Zhu, Yun
Hu, Aiguo
Wang, Guiyou
description Two kinds of phosphorus containing porous organic polymers (PPOPs) were synthesized through the Friedel-Crafts reaction between triphenylphosphine oxide and 4,4′-bis(chloromethyl)-1,1′-biphenyl (PPOP1) or α,α′-dibromo-p-xylene (PPOP2), where PPOPs were applied to improve the flame retardancy and physical properties of epoxy resin (EP). The PPOPs show high thermal stability, poor combustion properties, and large BET specific surface areas. The average pore diameter is 3.7 nm and 3.5 nm for PPOP1 and PPOP2, respectively. Monomers of EP can effectively diffuse into the pores of PPOPs, and PPOP/EP composites were further prepared by in situ polymerization. With only 1 wt% PPOP1 loaded into the composites, Tg values increase from 114 °C to 117 °C, while tensile strength and flexural modulus increase by 32% and 21%, respectively, resulting from the rigid skeleton of PPOPs and the interpenetrating polymer network structure in the composites. The dielectric constant and loss also decrease with the addition of PPOPs into the EP matrix. Cone calorimeter experiments show that PPOPs exert excellent flame retardancy on the EP matrix. In comparison with pure EP, when loading 5 wt% PPOP2, peak heat release rate, total heat release and total smoke production decrease by 26%, 48% and 39%, respectively. The PPOP/EP composites show higher tensile strength, Tg and flame retardancy than the samples prepared by simply blending the same amount of PPOPs into the EP matrix. Our research provides a promising strategy to prepare flame retardant EP composites with high performances. •Two kinds of phosphorus containing porous organic polymers (PPOPs) as flame retardants were synthesized.•PPOP/EP composites were prepared by in situ polymerization to form the structure of interpenetrating polymer network.•PPOPs showed excellent flame retardancy and smoke suppression to the EP matrix.•PPOPs improved the mechanical and dielectric properties of the EP matrix.
doi_str_mv 10.1016/j.polymdegradstab.2020.109159
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440490645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391020300914</els_id><sourcerecordid>2440490645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-e22eae6bd347485bebd5f0f6aa2f715ceb193d036eacf8f5488e9230d21b34c43</originalsourceid><addsrcrecordid>eNqNUE1PGzEQtaoiNYX-B0tVb2zw1252DxwQKhQJiQucLa89Th0l9jJ2UPfAf8chPXFipNFIb968mXmE_OJsyRnvLjbLKW3nnYM1GpeLGZeCiUNv4O3whSx4v5KNkIJ_JQvGFW_kwNk38j3nDauhWr4grzdmxGBNCSmeU781O6AIxaAz0c7UREenv3OujC2dME2AJUCmyVc45Zq4z9SmWEyIIa7plDBVJOHaxGDp-4GA-QKm9G-uyjnESt9NKYcC-YyceLPN8ON_PSVPN78fr_809w-3d9dX942VHS8NCAEGutFJtVJ9O8LoWs98Z4zwK95aGPkgHZMdGOt736q-h0FI5gQfpbJKnpKfR936wvMectGbtMdYV2qhFFMD61RbWZdHlsWUM4LXE4adwVlzpg-O643-4Lg-OK6Pjtf52-M81FdeAqDONkC04AKCLdql8EmlN7zGl_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440490645</pqid></control><display><type>article</type><title>Fabrication, flame retardancy and physical properties of phosphorus containing porous organic polymers/epoxy resin composites</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Miao, Junshuai ; Fang, Yunzhi ; Yang, Xingwen ; Zhu, Yun ; Hu, Aiguo ; Wang, Guiyou</creator><creatorcontrib>Miao, Junshuai ; Fang, Yunzhi ; Yang, Xingwen ; Zhu, Yun ; Hu, Aiguo ; Wang, Guiyou</creatorcontrib><description>Two kinds of phosphorus containing porous organic polymers (PPOPs) were synthesized through the Friedel-Crafts reaction between triphenylphosphine oxide and 4,4′-bis(chloromethyl)-1,1′-biphenyl (PPOP1) or α,α′-dibromo-p-xylene (PPOP2), where PPOPs were applied to improve the flame retardancy and physical properties of epoxy resin (EP). The PPOPs show high thermal stability, poor combustion properties, and large BET specific surface areas. The average pore diameter is 3.7 nm and 3.5 nm for PPOP1 and PPOP2, respectively. Monomers of EP can effectively diffuse into the pores of PPOPs, and PPOP/EP composites were further prepared by in situ polymerization. With only 1 wt% PPOP1 loaded into the composites, Tg values increase from 114 °C to 117 °C, while tensile strength and flexural modulus increase by 32% and 21%, respectively, resulting from the rigid skeleton of PPOPs and the interpenetrating polymer network structure in the composites. The dielectric constant and loss also decrease with the addition of PPOPs into the EP matrix. Cone calorimeter experiments show that PPOPs exert excellent flame retardancy on the EP matrix. In comparison with pure EP, when loading 5 wt% PPOP2, peak heat release rate, total heat release and total smoke production decrease by 26%, 48% and 39%, respectively. The PPOP/EP composites show higher tensile strength, Tg and flame retardancy than the samples prepared by simply blending the same amount of PPOPs into the EP matrix. Our research provides a promising strategy to prepare flame retardant EP composites with high performances. •Two kinds of phosphorus containing porous organic polymers (PPOPs) as flame retardants were synthesized.•PPOP/EP composites were prepared by in situ polymerization to form the structure of interpenetrating polymer network.•PPOPs showed excellent flame retardancy and smoke suppression to the EP matrix.•PPOPs improved the mechanical and dielectric properties of the EP matrix.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2020.109159</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Cone calorimeters ; Enthalpy ; Epoxy resin ; Epoxy resins ; Flame retardancy ; Flame retardants ; Friedel-Crafts reaction ; Heat release rate ; In situ polymerization ; Interpenetrating networks ; Mechanical property ; Modulus of rupture in bending ; Particulate composites ; Phosphorus ; Physical properties ; Polymer matrix composites ; Polymers ; Porous organic polymers ; Tensile strength ; Thermal stability ; Xylene</subject><ispartof>Polymer degradation and stability, 2020-06, Vol.176, p.109159, Article 109159</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-e22eae6bd347485bebd5f0f6aa2f715ceb193d036eacf8f5488e9230d21b34c43</citedby><cites>FETCH-LOGICAL-c361t-e22eae6bd347485bebd5f0f6aa2f715ceb193d036eacf8f5488e9230d21b34c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymdegradstab.2020.109159$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Miao, Junshuai</creatorcontrib><creatorcontrib>Fang, Yunzhi</creatorcontrib><creatorcontrib>Yang, Xingwen</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><creatorcontrib>Hu, Aiguo</creatorcontrib><creatorcontrib>Wang, Guiyou</creatorcontrib><title>Fabrication, flame retardancy and physical properties of phosphorus containing porous organic polymers/epoxy resin composites</title><title>Polymer degradation and stability</title><description>Two kinds of phosphorus containing porous organic polymers (PPOPs) were synthesized through the Friedel-Crafts reaction between triphenylphosphine oxide and 4,4′-bis(chloromethyl)-1,1′-biphenyl (PPOP1) or α,α′-dibromo-p-xylene (PPOP2), where PPOPs were applied to improve the flame retardancy and physical properties of epoxy resin (EP). The PPOPs show high thermal stability, poor combustion properties, and large BET specific surface areas. The average pore diameter is 3.7 nm and 3.5 nm for PPOP1 and PPOP2, respectively. Monomers of EP can effectively diffuse into the pores of PPOPs, and PPOP/EP composites were further prepared by in situ polymerization. With only 1 wt% PPOP1 loaded into the composites, Tg values increase from 114 °C to 117 °C, while tensile strength and flexural modulus increase by 32% and 21%, respectively, resulting from the rigid skeleton of PPOPs and the interpenetrating polymer network structure in the composites. The dielectric constant and loss also decrease with the addition of PPOPs into the EP matrix. Cone calorimeter experiments show that PPOPs exert excellent flame retardancy on the EP matrix. In comparison with pure EP, when loading 5 wt% PPOP2, peak heat release rate, total heat release and total smoke production decrease by 26%, 48% and 39%, respectively. The PPOP/EP composites show higher tensile strength, Tg and flame retardancy than the samples prepared by simply blending the same amount of PPOPs into the EP matrix. Our research provides a promising strategy to prepare flame retardant EP composites with high performances. •Two kinds of phosphorus containing porous organic polymers (PPOPs) as flame retardants were synthesized.•PPOP/EP composites were prepared by in situ polymerization to form the structure of interpenetrating polymer network.•PPOPs showed excellent flame retardancy and smoke suppression to the EP matrix.•PPOPs improved the mechanical and dielectric properties of the EP matrix.</description><subject>Cone calorimeters</subject><subject>Enthalpy</subject><subject>Epoxy resin</subject><subject>Epoxy resins</subject><subject>Flame retardancy</subject><subject>Flame retardants</subject><subject>Friedel-Crafts reaction</subject><subject>Heat release rate</subject><subject>In situ polymerization</subject><subject>Interpenetrating networks</subject><subject>Mechanical property</subject><subject>Modulus of rupture in bending</subject><subject>Particulate composites</subject><subject>Phosphorus</subject><subject>Physical properties</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Porous organic polymers</subject><subject>Tensile strength</subject><subject>Thermal stability</subject><subject>Xylene</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNUE1PGzEQtaoiNYX-B0tVb2zw1252DxwQKhQJiQucLa89Th0l9jJ2UPfAf8chPXFipNFIb968mXmE_OJsyRnvLjbLKW3nnYM1GpeLGZeCiUNv4O3whSx4v5KNkIJ_JQvGFW_kwNk38j3nDauhWr4grzdmxGBNCSmeU781O6AIxaAz0c7UREenv3OujC2dME2AJUCmyVc45Zq4z9SmWEyIIa7plDBVJOHaxGDp-4GA-QKm9G-uyjnESt9NKYcC-YyceLPN8ON_PSVPN78fr_809w-3d9dX942VHS8NCAEGutFJtVJ9O8LoWs98Z4zwK95aGPkgHZMdGOt736q-h0FI5gQfpbJKnpKfR936wvMectGbtMdYV2qhFFMD61RbWZdHlsWUM4LXE4adwVlzpg-O643-4Lg-OK6Pjtf52-M81FdeAqDONkC04AKCLdql8EmlN7zGl_s</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Miao, Junshuai</creator><creator>Fang, Yunzhi</creator><creator>Yang, Xingwen</creator><creator>Zhu, Yun</creator><creator>Hu, Aiguo</creator><creator>Wang, Guiyou</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202006</creationdate><title>Fabrication, flame retardancy and physical properties of phosphorus containing porous organic polymers/epoxy resin composites</title><author>Miao, Junshuai ; Fang, Yunzhi ; Yang, Xingwen ; Zhu, Yun ; Hu, Aiguo ; Wang, Guiyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-e22eae6bd347485bebd5f0f6aa2f715ceb193d036eacf8f5488e9230d21b34c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cone calorimeters</topic><topic>Enthalpy</topic><topic>Epoxy resin</topic><topic>Epoxy resins</topic><topic>Flame retardancy</topic><topic>Flame retardants</topic><topic>Friedel-Crafts reaction</topic><topic>Heat release rate</topic><topic>In situ polymerization</topic><topic>Interpenetrating networks</topic><topic>Mechanical property</topic><topic>Modulus of rupture in bending</topic><topic>Particulate composites</topic><topic>Phosphorus</topic><topic>Physical properties</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Porous organic polymers</topic><topic>Tensile strength</topic><topic>Thermal stability</topic><topic>Xylene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Junshuai</creatorcontrib><creatorcontrib>Fang, Yunzhi</creatorcontrib><creatorcontrib>Yang, Xingwen</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><creatorcontrib>Hu, Aiguo</creatorcontrib><creatorcontrib>Wang, Guiyou</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Junshuai</au><au>Fang, Yunzhi</au><au>Yang, Xingwen</au><au>Zhu, Yun</au><au>Hu, Aiguo</au><au>Wang, Guiyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication, flame retardancy and physical properties of phosphorus containing porous organic polymers/epoxy resin composites</atitle><jtitle>Polymer degradation and stability</jtitle><date>2020-06</date><risdate>2020</risdate><volume>176</volume><spage>109159</spage><pages>109159-</pages><artnum>109159</artnum><issn>0141-3910</issn><eissn>1873-2321</eissn><abstract>Two kinds of phosphorus containing porous organic polymers (PPOPs) were synthesized through the Friedel-Crafts reaction between triphenylphosphine oxide and 4,4′-bis(chloromethyl)-1,1′-biphenyl (PPOP1) or α,α′-dibromo-p-xylene (PPOP2), where PPOPs were applied to improve the flame retardancy and physical properties of epoxy resin (EP). The PPOPs show high thermal stability, poor combustion properties, and large BET specific surface areas. The average pore diameter is 3.7 nm and 3.5 nm for PPOP1 and PPOP2, respectively. Monomers of EP can effectively diffuse into the pores of PPOPs, and PPOP/EP composites were further prepared by in situ polymerization. With only 1 wt% PPOP1 loaded into the composites, Tg values increase from 114 °C to 117 °C, while tensile strength and flexural modulus increase by 32% and 21%, respectively, resulting from the rigid skeleton of PPOPs and the interpenetrating polymer network structure in the composites. The dielectric constant and loss also decrease with the addition of PPOPs into the EP matrix. Cone calorimeter experiments show that PPOPs exert excellent flame retardancy on the EP matrix. In comparison with pure EP, when loading 5 wt% PPOP2, peak heat release rate, total heat release and total smoke production decrease by 26%, 48% and 39%, respectively. The PPOP/EP composites show higher tensile strength, Tg and flame retardancy than the samples prepared by simply blending the same amount of PPOPs into the EP matrix. Our research provides a promising strategy to prepare flame retardant EP composites with high performances. •Two kinds of phosphorus containing porous organic polymers (PPOPs) as flame retardants were synthesized.•PPOP/EP composites were prepared by in situ polymerization to form the structure of interpenetrating polymer network.•PPOPs showed excellent flame retardancy and smoke suppression to the EP matrix.•PPOPs improved the mechanical and dielectric properties of the EP matrix.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2020.109159</doi></addata></record>
fulltext fulltext
identifier ISSN: 0141-3910
ispartof Polymer degradation and stability, 2020-06, Vol.176, p.109159, Article 109159
issn 0141-3910
1873-2321
language eng
recordid cdi_proquest_journals_2440490645
source Elsevier ScienceDirect Journals Complete
subjects Cone calorimeters
Enthalpy
Epoxy resin
Epoxy resins
Flame retardancy
Flame retardants
Friedel-Crafts reaction
Heat release rate
In situ polymerization
Interpenetrating networks
Mechanical property
Modulus of rupture in bending
Particulate composites
Phosphorus
Physical properties
Polymer matrix composites
Polymers
Porous organic polymers
Tensile strength
Thermal stability
Xylene
title Fabrication, flame retardancy and physical properties of phosphorus containing porous organic polymers/epoxy resin composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication,%20flame%20retardancy%20and%20physical%20properties%20of%20phosphorus%20containing%20porous%20organic%20polymers/epoxy%20resin%20composites&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=Miao,%20Junshuai&rft.date=2020-06&rft.volume=176&rft.spage=109159&rft.pages=109159-&rft.artnum=109159&rft.issn=0141-3910&rft.eissn=1873-2321&rft_id=info:doi/10.1016/j.polymdegradstab.2020.109159&rft_dat=%3Cproquest_cross%3E2440490645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440490645&rft_id=info:pmid/&rft_els_id=S0141391020300914&rfr_iscdi=true