Combined promoting effect of molybdenum on the bimetallic Al2O3-La2O3 catalysts for NOx reduction by CO
•Selective catalytic reduction of NOx by CO.•Mo helping the dispersion of the Co, Ni or Pt active sites.•Pto and Mo6+ redox pair and low interaction PtMo with the support.•High CO and NOx adsorption to form CO2 and N2.•Inhibition of sulfatation and coking over PtMo/Al2O3-La2O3. Promotional effect of...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2020-09, Vol.275, p.117872, Article 117872 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 117872 |
container_title | Fuel (Guildford) |
container_volume | 275 |
creator | Nascimento, João Pedro S. Oliveira, Alcineia C. Araujo, Jesuina C.S. de Sousa, Francisco F. Saraiva, Gilberto D. Rodríguez-Aguado, Elena Rodríguez-Castellón, Enrique |
description | •Selective catalytic reduction of NOx by CO.•Mo helping the dispersion of the Co, Ni or Pt active sites.•Pto and Mo6+ redox pair and low interaction PtMo with the support.•High CO and NOx adsorption to form CO2 and N2.•Inhibition of sulfatation and coking over PtMo/Al2O3-La2O3.
Promotional effect of molybdenum on bimetallic Al2O3-La2O3-based catalysts was investigated in the selective catalytic reduction (CO-SCR) reaction. The physicochemical properties of the solids were evaluated through X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), nitrogen physisorption analyses, Temperature programmed reduction (TPR), NH3-temperature programmed desorption (NH3-TPD) and Transmission electron microscopy (TEM). Structural characterizations confirmed the formation of porous nanostructured solids with molybdenum helping the dispersion of the Ni or Pt active sites close to the molybdenum particles. The catalysts have acid sites of medium to low strengths effectively enhancing the catalytic activity of the solids. Investigation of the various active sites revealed PtMo supported on Al2O3-La2O3 as the best catalyst using distinct temperatures and poisoning conditions in the CO-SCR reaction, rather than NiMo and CoMo counterparts. The oxidation of the species and phase transformation were more significant on the CoMo than NiMo catalyst, with the latter having a modest performance. The low interaction of the PtMo with the support provided the formation of a Pto and Mo6+ redox pair, which resulted in high CO and NOx adsorption to form CO2 and N2. This was due to the synergistic effect of valence-rich Mo transition oxides with Pt species, resulting in the inhibition of irreversible sulfatation and coking over PtMo/Al2O3-La2O3 catalyst. |
doi_str_mv | 10.1016/j.fuel.2020.117872 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440490540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236120308681</els_id><sourcerecordid>2440490540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-16d028055a26c846e4d7027fb2adfa52768296cca994562ee3393e6f899a8ba53</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB1x3zaNMU3AzFFwzORtchTW_GlLYZk1acf2-Gce3mXjiccx8fQreUrCih4r5b2Rn6FSMsCbSUJTtDCypLnpW04OdoQZIrY1zQS3QVY0cIKWWRL9Cu9kPjRmjxPvjBT27cYbAWzIS9xYPvD00L4zxgP-LpE3DjBph03zuD1z3b8myjU8VGJ_EQp4itD_ht-4MDtLOZXIo1B1xvr9GF1X2Em7--RB9Pj-_1S7bZPr_W601mOJNTRkVLmCRFoZkwMheQtyVhpW2Ybq0uWCkkq4QxuqryQjAAzisOwsqq0rLRBV-iu9Pc9M7XDHFSnZ_DmFYqluckr0iRk-RiJ5cJPsYAVu2DG3Q4KErUEajq1BGoOgJVJ6Ap9HAKQbr_20FQ0TgYDbQuJF6q9e6_-C-B5H1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440490540</pqid></control><display><type>article</type><title>Combined promoting effect of molybdenum on the bimetallic Al2O3-La2O3 catalysts for NOx reduction by CO</title><source>Access via ScienceDirect (Elsevier)</source><creator>Nascimento, João Pedro S. ; Oliveira, Alcineia C. ; Araujo, Jesuina C.S. ; de Sousa, Francisco F. ; Saraiva, Gilberto D. ; Rodríguez-Aguado, Elena ; Rodríguez-Castellón, Enrique</creator><creatorcontrib>Nascimento, João Pedro S. ; Oliveira, Alcineia C. ; Araujo, Jesuina C.S. ; de Sousa, Francisco F. ; Saraiva, Gilberto D. ; Rodríguez-Aguado, Elena ; Rodríguez-Castellón, Enrique</creatorcontrib><description>•Selective catalytic reduction of NOx by CO.•Mo helping the dispersion of the Co, Ni or Pt active sites.•Pto and Mo6+ redox pair and low interaction PtMo with the support.•High CO and NOx adsorption to form CO2 and N2.•Inhibition of sulfatation and coking over PtMo/Al2O3-La2O3.
Promotional effect of molybdenum on bimetallic Al2O3-La2O3-based catalysts was investigated in the selective catalytic reduction (CO-SCR) reaction. The physicochemical properties of the solids were evaluated through X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), nitrogen physisorption analyses, Temperature programmed reduction (TPR), NH3-temperature programmed desorption (NH3-TPD) and Transmission electron microscopy (TEM). Structural characterizations confirmed the formation of porous nanostructured solids with molybdenum helping the dispersion of the Ni or Pt active sites close to the molybdenum particles. The catalysts have acid sites of medium to low strengths effectively enhancing the catalytic activity of the solids. Investigation of the various active sites revealed PtMo supported on Al2O3-La2O3 as the best catalyst using distinct temperatures and poisoning conditions in the CO-SCR reaction, rather than NiMo and CoMo counterparts. The oxidation of the species and phase transformation were more significant on the CoMo than NiMo catalyst, with the latter having a modest performance. The low interaction of the PtMo with the support provided the formation of a Pto and Mo6+ redox pair, which resulted in high CO and NOx adsorption to form CO2 and N2. This was due to the synergistic effect of valence-rich Mo transition oxides with Pt species, resulting in the inhibition of irreversible sulfatation and coking over PtMo/Al2O3-La2O3 catalyst.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2020.117872</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminum oxide ; Ammonia ; Bimetals ; Carbon dioxide ; Catalyst ; Catalysts ; Catalytic activity ; Chemical reduction ; CO-SCR ; Coking ; Electron microscopy ; Fourier transforms ; Infrared spectroscopy ; Lanthanum oxides ; Microscopy ; Molybdenum ; Nitrogen oxides ; NOx conversion ; Oxidation ; Phase transitions ; Photoelectron spectroscopy ; Photoelectrons ; Physicochemical properties ; Poisons ; PtMo ; Raman spectroscopy ; Scanning electron microscopy ; Selective catalytic reduction ; Solids ; Spectrum analysis ; Synergistic effect ; Temperature ; Transmission electron microscopy ; X ray photoelectron spectroscopy ; X ray powder diffraction ; X-ray spectroscopy</subject><ispartof>Fuel (Guildford), 2020-09, Vol.275, p.117872, Article 117872</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-16d028055a26c846e4d7027fb2adfa52768296cca994562ee3393e6f899a8ba53</citedby><cites>FETCH-LOGICAL-c328t-16d028055a26c846e4d7027fb2adfa52768296cca994562ee3393e6f899a8ba53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2020.117872$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nascimento, João Pedro S.</creatorcontrib><creatorcontrib>Oliveira, Alcineia C.</creatorcontrib><creatorcontrib>Araujo, Jesuina C.S.</creatorcontrib><creatorcontrib>de Sousa, Francisco F.</creatorcontrib><creatorcontrib>Saraiva, Gilberto D.</creatorcontrib><creatorcontrib>Rodríguez-Aguado, Elena</creatorcontrib><creatorcontrib>Rodríguez-Castellón, Enrique</creatorcontrib><title>Combined promoting effect of molybdenum on the bimetallic Al2O3-La2O3 catalysts for NOx reduction by CO</title><title>Fuel (Guildford)</title><description>•Selective catalytic reduction of NOx by CO.•Mo helping the dispersion of the Co, Ni or Pt active sites.•Pto and Mo6+ redox pair and low interaction PtMo with the support.•High CO and NOx adsorption to form CO2 and N2.•Inhibition of sulfatation and coking over PtMo/Al2O3-La2O3.
Promotional effect of molybdenum on bimetallic Al2O3-La2O3-based catalysts was investigated in the selective catalytic reduction (CO-SCR) reaction. The physicochemical properties of the solids were evaluated through X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), nitrogen physisorption analyses, Temperature programmed reduction (TPR), NH3-temperature programmed desorption (NH3-TPD) and Transmission electron microscopy (TEM). Structural characterizations confirmed the formation of porous nanostructured solids with molybdenum helping the dispersion of the Ni or Pt active sites close to the molybdenum particles. The catalysts have acid sites of medium to low strengths effectively enhancing the catalytic activity of the solids. Investigation of the various active sites revealed PtMo supported on Al2O3-La2O3 as the best catalyst using distinct temperatures and poisoning conditions in the CO-SCR reaction, rather than NiMo and CoMo counterparts. The oxidation of the species and phase transformation were more significant on the CoMo than NiMo catalyst, with the latter having a modest performance. The low interaction of the PtMo with the support provided the formation of a Pto and Mo6+ redox pair, which resulted in high CO and NOx adsorption to form CO2 and N2. This was due to the synergistic effect of valence-rich Mo transition oxides with Pt species, resulting in the inhibition of irreversible sulfatation and coking over PtMo/Al2O3-La2O3 catalyst.</description><subject>Aluminum oxide</subject><subject>Ammonia</subject><subject>Bimetals</subject><subject>Carbon dioxide</subject><subject>Catalyst</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>CO-SCR</subject><subject>Coking</subject><subject>Electron microscopy</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Lanthanum oxides</subject><subject>Microscopy</subject><subject>Molybdenum</subject><subject>Nitrogen oxides</subject><subject>NOx conversion</subject><subject>Oxidation</subject><subject>Phase transitions</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Physicochemical properties</subject><subject>Poisons</subject><subject>PtMo</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Selective catalytic reduction</subject><subject>Solids</subject><subject>Spectrum analysis</subject><subject>Synergistic effect</subject><subject>Temperature</subject><subject>Transmission electron microscopy</subject><subject>X ray photoelectron spectroscopy</subject><subject>X ray powder diffraction</subject><subject>X-ray spectroscopy</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB1x3zaNMU3AzFFwzORtchTW_GlLYZk1acf2-Gce3mXjiccx8fQreUrCih4r5b2Rn6FSMsCbSUJTtDCypLnpW04OdoQZIrY1zQS3QVY0cIKWWRL9Cu9kPjRmjxPvjBT27cYbAWzIS9xYPvD00L4zxgP-LpE3DjBph03zuD1z3b8myjU8VGJ_EQp4itD_ht-4MDtLOZXIo1B1xvr9GF1X2Em7--RB9Pj-_1S7bZPr_W601mOJNTRkVLmCRFoZkwMheQtyVhpW2Ybq0uWCkkq4QxuqryQjAAzisOwsqq0rLRBV-iu9Pc9M7XDHFSnZ_DmFYqluckr0iRk-RiJ5cJPsYAVu2DG3Q4KErUEajq1BGoOgJVJ6Ap9HAKQbr_20FQ0TgYDbQuJF6q9e6_-C-B5H1Q</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Nascimento, João Pedro S.</creator><creator>Oliveira, Alcineia C.</creator><creator>Araujo, Jesuina C.S.</creator><creator>de Sousa, Francisco F.</creator><creator>Saraiva, Gilberto D.</creator><creator>Rodríguez-Aguado, Elena</creator><creator>Rodríguez-Castellón, Enrique</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20200901</creationdate><title>Combined promoting effect of molybdenum on the bimetallic Al2O3-La2O3 catalysts for NOx reduction by CO</title><author>Nascimento, João Pedro S. ; Oliveira, Alcineia C. ; Araujo, Jesuina C.S. ; de Sousa, Francisco F. ; Saraiva, Gilberto D. ; Rodríguez-Aguado, Elena ; Rodríguez-Castellón, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-16d028055a26c846e4d7027fb2adfa52768296cca994562ee3393e6f899a8ba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Ammonia</topic><topic>Bimetals</topic><topic>Carbon dioxide</topic><topic>Catalyst</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>CO-SCR</topic><topic>Coking</topic><topic>Electron microscopy</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Lanthanum oxides</topic><topic>Microscopy</topic><topic>Molybdenum</topic><topic>Nitrogen oxides</topic><topic>NOx conversion</topic><topic>Oxidation</topic><topic>Phase transitions</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Physicochemical properties</topic><topic>Poisons</topic><topic>PtMo</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Selective catalytic reduction</topic><topic>Solids</topic><topic>Spectrum analysis</topic><topic>Synergistic effect</topic><topic>Temperature</topic><topic>Transmission electron microscopy</topic><topic>X ray photoelectron spectroscopy</topic><topic>X ray powder diffraction</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nascimento, João Pedro S.</creatorcontrib><creatorcontrib>Oliveira, Alcineia C.</creatorcontrib><creatorcontrib>Araujo, Jesuina C.S.</creatorcontrib><creatorcontrib>de Sousa, Francisco F.</creatorcontrib><creatorcontrib>Saraiva, Gilberto D.</creatorcontrib><creatorcontrib>Rodríguez-Aguado, Elena</creatorcontrib><creatorcontrib>Rodríguez-Castellón, Enrique</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nascimento, João Pedro S.</au><au>Oliveira, Alcineia C.</au><au>Araujo, Jesuina C.S.</au><au>de Sousa, Francisco F.</au><au>Saraiva, Gilberto D.</au><au>Rodríguez-Aguado, Elena</au><au>Rodríguez-Castellón, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined promoting effect of molybdenum on the bimetallic Al2O3-La2O3 catalysts for NOx reduction by CO</atitle><jtitle>Fuel (Guildford)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>275</volume><spage>117872</spage><pages>117872-</pages><artnum>117872</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•Selective catalytic reduction of NOx by CO.•Mo helping the dispersion of the Co, Ni or Pt active sites.•Pto and Mo6+ redox pair and low interaction PtMo with the support.•High CO and NOx adsorption to form CO2 and N2.•Inhibition of sulfatation and coking over PtMo/Al2O3-La2O3.
Promotional effect of molybdenum on bimetallic Al2O3-La2O3-based catalysts was investigated in the selective catalytic reduction (CO-SCR) reaction. The physicochemical properties of the solids were evaluated through X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), nitrogen physisorption analyses, Temperature programmed reduction (TPR), NH3-temperature programmed desorption (NH3-TPD) and Transmission electron microscopy (TEM). Structural characterizations confirmed the formation of porous nanostructured solids with molybdenum helping the dispersion of the Ni or Pt active sites close to the molybdenum particles. The catalysts have acid sites of medium to low strengths effectively enhancing the catalytic activity of the solids. Investigation of the various active sites revealed PtMo supported on Al2O3-La2O3 as the best catalyst using distinct temperatures and poisoning conditions in the CO-SCR reaction, rather than NiMo and CoMo counterparts. The oxidation of the species and phase transformation were more significant on the CoMo than NiMo catalyst, with the latter having a modest performance. The low interaction of the PtMo with the support provided the formation of a Pto and Mo6+ redox pair, which resulted in high CO and NOx adsorption to form CO2 and N2. This was due to the synergistic effect of valence-rich Mo transition oxides with Pt species, resulting in the inhibition of irreversible sulfatation and coking over PtMo/Al2O3-La2O3 catalyst.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2020.117872</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2020-09, Vol.275, p.117872, Article 117872 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2440490540 |
source | Access via ScienceDirect (Elsevier) |
subjects | Aluminum oxide Ammonia Bimetals Carbon dioxide Catalyst Catalysts Catalytic activity Chemical reduction CO-SCR Coking Electron microscopy Fourier transforms Infrared spectroscopy Lanthanum oxides Microscopy Molybdenum Nitrogen oxides NOx conversion Oxidation Phase transitions Photoelectron spectroscopy Photoelectrons Physicochemical properties Poisons PtMo Raman spectroscopy Scanning electron microscopy Selective catalytic reduction Solids Spectrum analysis Synergistic effect Temperature Transmission electron microscopy X ray photoelectron spectroscopy X ray powder diffraction X-ray spectroscopy |
title | Combined promoting effect of molybdenum on the bimetallic Al2O3-La2O3 catalysts for NOx reduction by CO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20promoting%20effect%20of%20molybdenum%20on%20the%20bimetallic%20Al2O3-La2O3%20catalysts%20for%20NOx%20reduction%20by%20CO&rft.jtitle=Fuel%20(Guildford)&rft.au=Nascimento,%20Jo%C3%A3o%20Pedro%20S.&rft.date=2020-09-01&rft.volume=275&rft.spage=117872&rft.pages=117872-&rft.artnum=117872&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2020.117872&rft_dat=%3Cproquest_cross%3E2440490540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440490540&rft_id=info:pmid/&rft_els_id=S0016236120308681&rfr_iscdi=true |