Combined promoting effect of molybdenum on the bimetallic Al2O3-La2O3 catalysts for NOx reduction by CO

•Selective catalytic reduction of NOx by CO.•Mo helping the dispersion of the Co, Ni or Pt active sites.•Pto and Mo6+ redox pair and low interaction PtMo with the support.•High CO and NOx adsorption to form CO2 and N2.•Inhibition of sulfatation and coking over PtMo/Al2O3-La2O3. Promotional effect of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2020-09, Vol.275, p.117872, Article 117872
Hauptverfasser: Nascimento, João Pedro S., Oliveira, Alcineia C., Araujo, Jesuina C.S., de Sousa, Francisco F., Saraiva, Gilberto D., Rodríguez-Aguado, Elena, Rodríguez-Castellón, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 117872
container_title Fuel (Guildford)
container_volume 275
creator Nascimento, João Pedro S.
Oliveira, Alcineia C.
Araujo, Jesuina C.S.
de Sousa, Francisco F.
Saraiva, Gilberto D.
Rodríguez-Aguado, Elena
Rodríguez-Castellón, Enrique
description •Selective catalytic reduction of NOx by CO.•Mo helping the dispersion of the Co, Ni or Pt active sites.•Pto and Mo6+ redox pair and low interaction PtMo with the support.•High CO and NOx adsorption to form CO2 and N2.•Inhibition of sulfatation and coking over PtMo/Al2O3-La2O3. Promotional effect of molybdenum on bimetallic Al2O3-La2O3-based catalysts was investigated in the selective catalytic reduction (CO-SCR) reaction. The physicochemical properties of the solids were evaluated through X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), nitrogen physisorption analyses, Temperature programmed reduction (TPR), NH3-temperature programmed desorption (NH3-TPD) and Transmission electron microscopy (TEM). Structural characterizations confirmed the formation of porous nanostructured solids with molybdenum helping the dispersion of the Ni or Pt active sites close to the molybdenum particles. The catalysts have acid sites of medium to low strengths effectively enhancing the catalytic activity of the solids. Investigation of the various active sites revealed PtMo supported on Al2O3-La2O3 as the best catalyst using distinct temperatures and poisoning conditions in the CO-SCR reaction, rather than NiMo and CoMo counterparts. The oxidation of the species and phase transformation were more significant on the CoMo than NiMo catalyst, with the latter having a modest performance. The low interaction of the PtMo with the support provided the formation of a Pto and Mo6+ redox pair, which resulted in high CO and NOx adsorption to form CO2 and N2. This was due to the synergistic effect of valence-rich Mo transition oxides with Pt species, resulting in the inhibition of irreversible sulfatation and coking over PtMo/Al2O3-La2O3 catalyst.
doi_str_mv 10.1016/j.fuel.2020.117872
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440490540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236120308681</els_id><sourcerecordid>2440490540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-16d028055a26c846e4d7027fb2adfa52768296cca994562ee3393e6f899a8ba53</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB1x3zaNMU3AzFFwzORtchTW_GlLYZk1acf2-Gce3mXjiccx8fQreUrCih4r5b2Rn6FSMsCbSUJTtDCypLnpW04OdoQZIrY1zQS3QVY0cIKWWRL9Cu9kPjRmjxPvjBT27cYbAWzIS9xYPvD00L4zxgP-LpE3DjBph03zuD1z3b8myjU8VGJ_EQp4itD_ht-4MDtLOZXIo1B1xvr9GF1X2Em7--RB9Pj-_1S7bZPr_W601mOJNTRkVLmCRFoZkwMheQtyVhpW2Ybq0uWCkkq4QxuqryQjAAzisOwsqq0rLRBV-iu9Pc9M7XDHFSnZ_DmFYqluckr0iRk-RiJ5cJPsYAVu2DG3Q4KErUEajq1BGoOgJVJ6Ap9HAKQbr_20FQ0TgYDbQuJF6q9e6_-C-B5H1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440490540</pqid></control><display><type>article</type><title>Combined promoting effect of molybdenum on the bimetallic Al2O3-La2O3 catalysts for NOx reduction by CO</title><source>Access via ScienceDirect (Elsevier)</source><creator>Nascimento, João Pedro S. ; Oliveira, Alcineia C. ; Araujo, Jesuina C.S. ; de Sousa, Francisco F. ; Saraiva, Gilberto D. ; Rodríguez-Aguado, Elena ; Rodríguez-Castellón, Enrique</creator><creatorcontrib>Nascimento, João Pedro S. ; Oliveira, Alcineia C. ; Araujo, Jesuina C.S. ; de Sousa, Francisco F. ; Saraiva, Gilberto D. ; Rodríguez-Aguado, Elena ; Rodríguez-Castellón, Enrique</creatorcontrib><description>•Selective catalytic reduction of NOx by CO.•Mo helping the dispersion of the Co, Ni or Pt active sites.•Pto and Mo6+ redox pair and low interaction PtMo with the support.•High CO and NOx adsorption to form CO2 and N2.•Inhibition of sulfatation and coking over PtMo/Al2O3-La2O3. Promotional effect of molybdenum on bimetallic Al2O3-La2O3-based catalysts was investigated in the selective catalytic reduction (CO-SCR) reaction. The physicochemical properties of the solids were evaluated through X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), nitrogen physisorption analyses, Temperature programmed reduction (TPR), NH3-temperature programmed desorption (NH3-TPD) and Transmission electron microscopy (TEM). Structural characterizations confirmed the formation of porous nanostructured solids with molybdenum helping the dispersion of the Ni or Pt active sites close to the molybdenum particles. The catalysts have acid sites of medium to low strengths effectively enhancing the catalytic activity of the solids. Investigation of the various active sites revealed PtMo supported on Al2O3-La2O3 as the best catalyst using distinct temperatures and poisoning conditions in the CO-SCR reaction, rather than NiMo and CoMo counterparts. The oxidation of the species and phase transformation were more significant on the CoMo than NiMo catalyst, with the latter having a modest performance. The low interaction of the PtMo with the support provided the formation of a Pto and Mo6+ redox pair, which resulted in high CO and NOx adsorption to form CO2 and N2. This was due to the synergistic effect of valence-rich Mo transition oxides with Pt species, resulting in the inhibition of irreversible sulfatation and coking over PtMo/Al2O3-La2O3 catalyst.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2020.117872</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminum oxide ; Ammonia ; Bimetals ; Carbon dioxide ; Catalyst ; Catalysts ; Catalytic activity ; Chemical reduction ; CO-SCR ; Coking ; Electron microscopy ; Fourier transforms ; Infrared spectroscopy ; Lanthanum oxides ; Microscopy ; Molybdenum ; Nitrogen oxides ; NOx conversion ; Oxidation ; Phase transitions ; Photoelectron spectroscopy ; Photoelectrons ; Physicochemical properties ; Poisons ; PtMo ; Raman spectroscopy ; Scanning electron microscopy ; Selective catalytic reduction ; Solids ; Spectrum analysis ; Synergistic effect ; Temperature ; Transmission electron microscopy ; X ray photoelectron spectroscopy ; X ray powder diffraction ; X-ray spectroscopy</subject><ispartof>Fuel (Guildford), 2020-09, Vol.275, p.117872, Article 117872</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-16d028055a26c846e4d7027fb2adfa52768296cca994562ee3393e6f899a8ba53</citedby><cites>FETCH-LOGICAL-c328t-16d028055a26c846e4d7027fb2adfa52768296cca994562ee3393e6f899a8ba53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2020.117872$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nascimento, João Pedro S.</creatorcontrib><creatorcontrib>Oliveira, Alcineia C.</creatorcontrib><creatorcontrib>Araujo, Jesuina C.S.</creatorcontrib><creatorcontrib>de Sousa, Francisco F.</creatorcontrib><creatorcontrib>Saraiva, Gilberto D.</creatorcontrib><creatorcontrib>Rodríguez-Aguado, Elena</creatorcontrib><creatorcontrib>Rodríguez-Castellón, Enrique</creatorcontrib><title>Combined promoting effect of molybdenum on the bimetallic Al2O3-La2O3 catalysts for NOx reduction by CO</title><title>Fuel (Guildford)</title><description>•Selective catalytic reduction of NOx by CO.•Mo helping the dispersion of the Co, Ni or Pt active sites.•Pto and Mo6+ redox pair and low interaction PtMo with the support.•High CO and NOx adsorption to form CO2 and N2.•Inhibition of sulfatation and coking over PtMo/Al2O3-La2O3. Promotional effect of molybdenum on bimetallic Al2O3-La2O3-based catalysts was investigated in the selective catalytic reduction (CO-SCR) reaction. The physicochemical properties of the solids were evaluated through X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), nitrogen physisorption analyses, Temperature programmed reduction (TPR), NH3-temperature programmed desorption (NH3-TPD) and Transmission electron microscopy (TEM). Structural characterizations confirmed the formation of porous nanostructured solids with molybdenum helping the dispersion of the Ni or Pt active sites close to the molybdenum particles. The catalysts have acid sites of medium to low strengths effectively enhancing the catalytic activity of the solids. Investigation of the various active sites revealed PtMo supported on Al2O3-La2O3 as the best catalyst using distinct temperatures and poisoning conditions in the CO-SCR reaction, rather than NiMo and CoMo counterparts. The oxidation of the species and phase transformation were more significant on the CoMo than NiMo catalyst, with the latter having a modest performance. The low interaction of the PtMo with the support provided the formation of a Pto and Mo6+ redox pair, which resulted in high CO and NOx adsorption to form CO2 and N2. This was due to the synergistic effect of valence-rich Mo transition oxides with Pt species, resulting in the inhibition of irreversible sulfatation and coking over PtMo/Al2O3-La2O3 catalyst.</description><subject>Aluminum oxide</subject><subject>Ammonia</subject><subject>Bimetals</subject><subject>Carbon dioxide</subject><subject>Catalyst</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>CO-SCR</subject><subject>Coking</subject><subject>Electron microscopy</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Lanthanum oxides</subject><subject>Microscopy</subject><subject>Molybdenum</subject><subject>Nitrogen oxides</subject><subject>NOx conversion</subject><subject>Oxidation</subject><subject>Phase transitions</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Physicochemical properties</subject><subject>Poisons</subject><subject>PtMo</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Selective catalytic reduction</subject><subject>Solids</subject><subject>Spectrum analysis</subject><subject>Synergistic effect</subject><subject>Temperature</subject><subject>Transmission electron microscopy</subject><subject>X ray photoelectron spectroscopy</subject><subject>X ray powder diffraction</subject><subject>X-ray spectroscopy</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB1x3zaNMU3AzFFwzORtchTW_GlLYZk1acf2-Gce3mXjiccx8fQreUrCih4r5b2Rn6FSMsCbSUJTtDCypLnpW04OdoQZIrY1zQS3QVY0cIKWWRL9Cu9kPjRmjxPvjBT27cYbAWzIS9xYPvD00L4zxgP-LpE3DjBph03zuD1z3b8myjU8VGJ_EQp4itD_ht-4MDtLOZXIo1B1xvr9GF1X2Em7--RB9Pj-_1S7bZPr_W601mOJNTRkVLmCRFoZkwMheQtyVhpW2Ybq0uWCkkq4QxuqryQjAAzisOwsqq0rLRBV-iu9Pc9M7XDHFSnZ_DmFYqluckr0iRk-RiJ5cJPsYAVu2DG3Q4KErUEajq1BGoOgJVJ6Ap9HAKQbr_20FQ0TgYDbQuJF6q9e6_-C-B5H1Q</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Nascimento, João Pedro S.</creator><creator>Oliveira, Alcineia C.</creator><creator>Araujo, Jesuina C.S.</creator><creator>de Sousa, Francisco F.</creator><creator>Saraiva, Gilberto D.</creator><creator>Rodríguez-Aguado, Elena</creator><creator>Rodríguez-Castellón, Enrique</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20200901</creationdate><title>Combined promoting effect of molybdenum on the bimetallic Al2O3-La2O3 catalysts for NOx reduction by CO</title><author>Nascimento, João Pedro S. ; Oliveira, Alcineia C. ; Araujo, Jesuina C.S. ; de Sousa, Francisco F. ; Saraiva, Gilberto D. ; Rodríguez-Aguado, Elena ; Rodríguez-Castellón, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-16d028055a26c846e4d7027fb2adfa52768296cca994562ee3393e6f899a8ba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Ammonia</topic><topic>Bimetals</topic><topic>Carbon dioxide</topic><topic>Catalyst</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>CO-SCR</topic><topic>Coking</topic><topic>Electron microscopy</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Lanthanum oxides</topic><topic>Microscopy</topic><topic>Molybdenum</topic><topic>Nitrogen oxides</topic><topic>NOx conversion</topic><topic>Oxidation</topic><topic>Phase transitions</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Physicochemical properties</topic><topic>Poisons</topic><topic>PtMo</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Selective catalytic reduction</topic><topic>Solids</topic><topic>Spectrum analysis</topic><topic>Synergistic effect</topic><topic>Temperature</topic><topic>Transmission electron microscopy</topic><topic>X ray photoelectron spectroscopy</topic><topic>X ray powder diffraction</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nascimento, João Pedro S.</creatorcontrib><creatorcontrib>Oliveira, Alcineia C.</creatorcontrib><creatorcontrib>Araujo, Jesuina C.S.</creatorcontrib><creatorcontrib>de Sousa, Francisco F.</creatorcontrib><creatorcontrib>Saraiva, Gilberto D.</creatorcontrib><creatorcontrib>Rodríguez-Aguado, Elena</creatorcontrib><creatorcontrib>Rodríguez-Castellón, Enrique</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nascimento, João Pedro S.</au><au>Oliveira, Alcineia C.</au><au>Araujo, Jesuina C.S.</au><au>de Sousa, Francisco F.</au><au>Saraiva, Gilberto D.</au><au>Rodríguez-Aguado, Elena</au><au>Rodríguez-Castellón, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined promoting effect of molybdenum on the bimetallic Al2O3-La2O3 catalysts for NOx reduction by CO</atitle><jtitle>Fuel (Guildford)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>275</volume><spage>117872</spage><pages>117872-</pages><artnum>117872</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•Selective catalytic reduction of NOx by CO.•Mo helping the dispersion of the Co, Ni or Pt active sites.•Pto and Mo6+ redox pair and low interaction PtMo with the support.•High CO and NOx adsorption to form CO2 and N2.•Inhibition of sulfatation and coking over PtMo/Al2O3-La2O3. Promotional effect of molybdenum on bimetallic Al2O3-La2O3-based catalysts was investigated in the selective catalytic reduction (CO-SCR) reaction. The physicochemical properties of the solids were evaluated through X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), nitrogen physisorption analyses, Temperature programmed reduction (TPR), NH3-temperature programmed desorption (NH3-TPD) and Transmission electron microscopy (TEM). Structural characterizations confirmed the formation of porous nanostructured solids with molybdenum helping the dispersion of the Ni or Pt active sites close to the molybdenum particles. The catalysts have acid sites of medium to low strengths effectively enhancing the catalytic activity of the solids. Investigation of the various active sites revealed PtMo supported on Al2O3-La2O3 as the best catalyst using distinct temperatures and poisoning conditions in the CO-SCR reaction, rather than NiMo and CoMo counterparts. The oxidation of the species and phase transformation were more significant on the CoMo than NiMo catalyst, with the latter having a modest performance. The low interaction of the PtMo with the support provided the formation of a Pto and Mo6+ redox pair, which resulted in high CO and NOx adsorption to form CO2 and N2. This was due to the synergistic effect of valence-rich Mo transition oxides with Pt species, resulting in the inhibition of irreversible sulfatation and coking over PtMo/Al2O3-La2O3 catalyst.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2020.117872</doi></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2020-09, Vol.275, p.117872, Article 117872
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2440490540
source Access via ScienceDirect (Elsevier)
subjects Aluminum oxide
Ammonia
Bimetals
Carbon dioxide
Catalyst
Catalysts
Catalytic activity
Chemical reduction
CO-SCR
Coking
Electron microscopy
Fourier transforms
Infrared spectroscopy
Lanthanum oxides
Microscopy
Molybdenum
Nitrogen oxides
NOx conversion
Oxidation
Phase transitions
Photoelectron spectroscopy
Photoelectrons
Physicochemical properties
Poisons
PtMo
Raman spectroscopy
Scanning electron microscopy
Selective catalytic reduction
Solids
Spectrum analysis
Synergistic effect
Temperature
Transmission electron microscopy
X ray photoelectron spectroscopy
X ray powder diffraction
X-ray spectroscopy
title Combined promoting effect of molybdenum on the bimetallic Al2O3-La2O3 catalysts for NOx reduction by CO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20promoting%20effect%20of%20molybdenum%20on%20the%20bimetallic%20Al2O3-La2O3%20catalysts%20for%20NOx%20reduction%20by%20CO&rft.jtitle=Fuel%20(Guildford)&rft.au=Nascimento,%20Jo%C3%A3o%20Pedro%20S.&rft.date=2020-09-01&rft.volume=275&rft.spage=117872&rft.pages=117872-&rft.artnum=117872&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2020.117872&rft_dat=%3Cproquest_cross%3E2440490540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440490540&rft_id=info:pmid/&rft_els_id=S0016236120308681&rfr_iscdi=true