Augmented Lévy–Michell equations for flexural plates
A new sixth order, isotropic elastic and flexural plate theory is presented based on the fourth order equations of Lévy (1877) and Michell (1900). The lack of surface loading in these Lévy–Michell equations is overcome by including the dominant flexural component of Dougall’s (1904) solution for a p...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2020-05, Vol.191-192, p.497-508 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 508 |
---|---|
container_issue | |
container_start_page | 497 |
container_title | International journal of solids and structures |
container_volume | 191-192 |
creator | Robinson, Neville I. |
description | A new sixth order, isotropic elastic and flexural plate theory is presented based on the fourth order equations of Lévy (1877) and Michell (1900). The lack of surface loading in these Lévy–Michell equations is overcome by including the dominant flexural component of Dougall’s (1904) solution for a point load on the surface of a three dimensional isotropic, elastic layer. The augmented plate equations are arranged to fit the form of a consistent sixth order system of isotropic plate equations which include the well known work of Reissner and static equations of Mindlin. Numerical applications to two three dimensional problems with analytical solutions show good comparative results. |
doi_str_mv | 10.1016/j.ijsolstr.2019.12.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440489586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768319305281</els_id><sourcerecordid>2440489586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-8ed495bbfc603086253a7ad13928cb5bd3869785e8e90669c49fbc19cea1a80c3</originalsourceid><addsrcrecordid>eNqFkEtOwzAURS0EEqWwBRSJccKzkzj2jKriJxUxgbHlOC_gyE1aO6nojD2wCtbBTlgJqQpjRndyP7qHkHMKCQXKL5vENqFzofcJAyoTyhJg9IBMqChkzGjGD8kEgEFccJEek5MQGgDIUgkTUsyGlyW2PVbR4utzs_1-_3iw5hWdi3A96N52bYjqzke1w7fBaxetnO4xnJKjWruAZ786Jc8310_zu3jxeHs_ny1iw0TRxwKrTOZlWRsOKQjO8lQXuqKpZMKUeVmlgstC5ChQAufSZLIuDZUGNdUCTDolF_vele_WA4ZeNd3g23FSsSyDTMhc8NHF9y7juxA81mrl7VL7raKgdpBUo_4gqR0kRZkaIY3Bq30Qxw8bi14FY7E1WFmPpldVZ_-r-AFebXVG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440489586</pqid></control><display><type>article</type><title>Augmented Lévy–Michell equations for flexural plates</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Robinson, Neville I.</creator><creatorcontrib>Robinson, Neville I.</creatorcontrib><description>A new sixth order, isotropic elastic and flexural plate theory is presented based on the fourth order equations of Lévy (1877) and Michell (1900). The lack of surface loading in these Lévy–Michell equations is overcome by including the dominant flexural component of Dougall’s (1904) solution for a point load on the surface of a three dimensional isotropic, elastic layer. The augmented plate equations are arranged to fit the form of a consistent sixth order system of isotropic plate equations which include the well known work of Reissner and static equations of Mindlin. Numerical applications to two three dimensional problems with analytical solutions show good comparative results.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2019.12.021</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Dougall ; Elastic layers ; Exact solutions ; Explicit stresses and displacements ; Flexural plate ; Integral reciprocal formula ; Lévy ; Michell ; Mindlin plates ; Plate theory ; Sixth order ; Three dimensional analysis ; Three-dimensional plate hole analysis</subject><ispartof>International journal of solids and structures, 2020-05, Vol.191-192, p.497-508</ispartof><rights>2019</rights><rights>Copyright Elsevier BV May 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-8ed495bbfc603086253a7ad13928cb5bd3869785e8e90669c49fbc19cea1a80c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2019.12.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Robinson, Neville I.</creatorcontrib><title>Augmented Lévy–Michell equations for flexural plates</title><title>International journal of solids and structures</title><description>A new sixth order, isotropic elastic and flexural plate theory is presented based on the fourth order equations of Lévy (1877) and Michell (1900). The lack of surface loading in these Lévy–Michell equations is overcome by including the dominant flexural component of Dougall’s (1904) solution for a point load on the surface of a three dimensional isotropic, elastic layer. The augmented plate equations are arranged to fit the form of a consistent sixth order system of isotropic plate equations which include the well known work of Reissner and static equations of Mindlin. Numerical applications to two three dimensional problems with analytical solutions show good comparative results.</description><subject>Dougall</subject><subject>Elastic layers</subject><subject>Exact solutions</subject><subject>Explicit stresses and displacements</subject><subject>Flexural plate</subject><subject>Integral reciprocal formula</subject><subject>Lévy</subject><subject>Michell</subject><subject>Mindlin plates</subject><subject>Plate theory</subject><subject>Sixth order</subject><subject>Three dimensional analysis</subject><subject>Three-dimensional plate hole analysis</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAURS0EEqWwBRSJccKzkzj2jKriJxUxgbHlOC_gyE1aO6nojD2wCtbBTlgJqQpjRndyP7qHkHMKCQXKL5vENqFzofcJAyoTyhJg9IBMqChkzGjGD8kEgEFccJEek5MQGgDIUgkTUsyGlyW2PVbR4utzs_1-_3iw5hWdi3A96N52bYjqzke1w7fBaxetnO4xnJKjWruAZ786Jc8310_zu3jxeHs_ny1iw0TRxwKrTOZlWRsOKQjO8lQXuqKpZMKUeVmlgstC5ChQAufSZLIuDZUGNdUCTDolF_vele_WA4ZeNd3g23FSsSyDTMhc8NHF9y7juxA81mrl7VL7raKgdpBUo_4gqR0kRZkaIY3Bq30Qxw8bi14FY7E1WFmPpldVZ_-r-AFebXVG</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Robinson, Neville I.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20200515</creationdate><title>Augmented Lévy–Michell equations for flexural plates</title><author>Robinson, Neville I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-8ed495bbfc603086253a7ad13928cb5bd3869785e8e90669c49fbc19cea1a80c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dougall</topic><topic>Elastic layers</topic><topic>Exact solutions</topic><topic>Explicit stresses and displacements</topic><topic>Flexural plate</topic><topic>Integral reciprocal formula</topic><topic>Lévy</topic><topic>Michell</topic><topic>Mindlin plates</topic><topic>Plate theory</topic><topic>Sixth order</topic><topic>Three dimensional analysis</topic><topic>Three-dimensional plate hole analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Neville I.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, Neville I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented Lévy–Michell equations for flexural plates</atitle><jtitle>International journal of solids and structures</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>191-192</volume><spage>497</spage><epage>508</epage><pages>497-508</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>A new sixth order, isotropic elastic and flexural plate theory is presented based on the fourth order equations of Lévy (1877) and Michell (1900). The lack of surface loading in these Lévy–Michell equations is overcome by including the dominant flexural component of Dougall’s (1904) solution for a point load on the surface of a three dimensional isotropic, elastic layer. The augmented plate equations are arranged to fit the form of a consistent sixth order system of isotropic plate equations which include the well known work of Reissner and static equations of Mindlin. Numerical applications to two three dimensional problems with analytical solutions show good comparative results.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2019.12.021</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2020-05, Vol.191-192, p.497-508 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_proquest_journals_2440489586 |
source | Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library |
subjects | Dougall Elastic layers Exact solutions Explicit stresses and displacements Flexural plate Integral reciprocal formula Lévy Michell Mindlin plates Plate theory Sixth order Three dimensional analysis Three-dimensional plate hole analysis |
title | Augmented Lévy–Michell equations for flexural plates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20L%C3%A9vy%E2%80%93Michell%20equations%20for%20flexural%20plates&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Robinson,%20Neville%20I.&rft.date=2020-05-15&rft.volume=191-192&rft.spage=497&rft.epage=508&rft.pages=497-508&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2019.12.021&rft_dat=%3Cproquest_cross%3E2440489586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440489586&rft_id=info:pmid/&rft_els_id=S0020768319305281&rfr_iscdi=true |