Augmented Lévy–Michell equations for flexural plates

A new sixth order, isotropic elastic and flexural plate theory is presented based on the fourth order equations of Lévy (1877) and Michell (1900). The lack of surface loading in these Lévy–Michell equations is overcome by including the dominant flexural component of Dougall’s (1904) solution for a p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2020-05, Vol.191-192, p.497-508
1. Verfasser: Robinson, Neville I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 508
container_issue
container_start_page 497
container_title International journal of solids and structures
container_volume 191-192
creator Robinson, Neville I.
description A new sixth order, isotropic elastic and flexural plate theory is presented based on the fourth order equations of Lévy (1877) and Michell (1900). The lack of surface loading in these Lévy–Michell equations is overcome by including the dominant flexural component of Dougall’s (1904) solution for a point load on the surface of a three dimensional isotropic, elastic layer. The augmented plate equations are arranged to fit the form of a consistent sixth order system of isotropic plate equations which include the well known work of Reissner and static equations of Mindlin. Numerical applications to two three dimensional problems with analytical solutions show good comparative results.
doi_str_mv 10.1016/j.ijsolstr.2019.12.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440489586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768319305281</els_id><sourcerecordid>2440489586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-8ed495bbfc603086253a7ad13928cb5bd3869785e8e90669c49fbc19cea1a80c3</originalsourceid><addsrcrecordid>eNqFkEtOwzAURS0EEqWwBRSJccKzkzj2jKriJxUxgbHlOC_gyE1aO6nojD2wCtbBTlgJqQpjRndyP7qHkHMKCQXKL5vENqFzofcJAyoTyhJg9IBMqChkzGjGD8kEgEFccJEek5MQGgDIUgkTUsyGlyW2PVbR4utzs_1-_3iw5hWdi3A96N52bYjqzke1w7fBaxetnO4xnJKjWruAZ786Jc8310_zu3jxeHs_ny1iw0TRxwKrTOZlWRsOKQjO8lQXuqKpZMKUeVmlgstC5ChQAufSZLIuDZUGNdUCTDolF_vele_WA4ZeNd3g23FSsSyDTMhc8NHF9y7juxA81mrl7VL7raKgdpBUo_4gqR0kRZkaIY3Bq30Qxw8bi14FY7E1WFmPpldVZ_-r-AFebXVG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440489586</pqid></control><display><type>article</type><title>Augmented Lévy–Michell equations for flexural plates</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Robinson, Neville I.</creator><creatorcontrib>Robinson, Neville I.</creatorcontrib><description>A new sixth order, isotropic elastic and flexural plate theory is presented based on the fourth order equations of Lévy (1877) and Michell (1900). The lack of surface loading in these Lévy–Michell equations is overcome by including the dominant flexural component of Dougall’s (1904) solution for a point load on the surface of a three dimensional isotropic, elastic layer. The augmented plate equations are arranged to fit the form of a consistent sixth order system of isotropic plate equations which include the well known work of Reissner and static equations of Mindlin. Numerical applications to two three dimensional problems with analytical solutions show good comparative results.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2019.12.021</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Dougall ; Elastic layers ; Exact solutions ; Explicit stresses and displacements ; Flexural plate ; Integral reciprocal formula ; Lévy ; Michell ; Mindlin plates ; Plate theory ; Sixth order ; Three dimensional analysis ; Three-dimensional plate hole analysis</subject><ispartof>International journal of solids and structures, 2020-05, Vol.191-192, p.497-508</ispartof><rights>2019</rights><rights>Copyright Elsevier BV May 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-8ed495bbfc603086253a7ad13928cb5bd3869785e8e90669c49fbc19cea1a80c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2019.12.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Robinson, Neville I.</creatorcontrib><title>Augmented Lévy–Michell equations for flexural plates</title><title>International journal of solids and structures</title><description>A new sixth order, isotropic elastic and flexural plate theory is presented based on the fourth order equations of Lévy (1877) and Michell (1900). The lack of surface loading in these Lévy–Michell equations is overcome by including the dominant flexural component of Dougall’s (1904) solution for a point load on the surface of a three dimensional isotropic, elastic layer. The augmented plate equations are arranged to fit the form of a consistent sixth order system of isotropic plate equations which include the well known work of Reissner and static equations of Mindlin. Numerical applications to two three dimensional problems with analytical solutions show good comparative results.</description><subject>Dougall</subject><subject>Elastic layers</subject><subject>Exact solutions</subject><subject>Explicit stresses and displacements</subject><subject>Flexural plate</subject><subject>Integral reciprocal formula</subject><subject>Lévy</subject><subject>Michell</subject><subject>Mindlin plates</subject><subject>Plate theory</subject><subject>Sixth order</subject><subject>Three dimensional analysis</subject><subject>Three-dimensional plate hole analysis</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAURS0EEqWwBRSJccKzkzj2jKriJxUxgbHlOC_gyE1aO6nojD2wCtbBTlgJqQpjRndyP7qHkHMKCQXKL5vENqFzofcJAyoTyhJg9IBMqChkzGjGD8kEgEFccJEek5MQGgDIUgkTUsyGlyW2PVbR4utzs_1-_3iw5hWdi3A96N52bYjqzke1w7fBaxetnO4xnJKjWruAZ786Jc8310_zu3jxeHs_ny1iw0TRxwKrTOZlWRsOKQjO8lQXuqKpZMKUeVmlgstC5ChQAufSZLIuDZUGNdUCTDolF_vele_WA4ZeNd3g23FSsSyDTMhc8NHF9y7juxA81mrl7VL7raKgdpBUo_4gqR0kRZkaIY3Bq30Qxw8bi14FY7E1WFmPpldVZ_-r-AFebXVG</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Robinson, Neville I.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20200515</creationdate><title>Augmented Lévy–Michell equations for flexural plates</title><author>Robinson, Neville I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-8ed495bbfc603086253a7ad13928cb5bd3869785e8e90669c49fbc19cea1a80c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dougall</topic><topic>Elastic layers</topic><topic>Exact solutions</topic><topic>Explicit stresses and displacements</topic><topic>Flexural plate</topic><topic>Integral reciprocal formula</topic><topic>Lévy</topic><topic>Michell</topic><topic>Mindlin plates</topic><topic>Plate theory</topic><topic>Sixth order</topic><topic>Three dimensional analysis</topic><topic>Three-dimensional plate hole analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Neville I.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, Neville I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented Lévy–Michell equations for flexural plates</atitle><jtitle>International journal of solids and structures</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>191-192</volume><spage>497</spage><epage>508</epage><pages>497-508</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>A new sixth order, isotropic elastic and flexural plate theory is presented based on the fourth order equations of Lévy (1877) and Michell (1900). The lack of surface loading in these Lévy–Michell equations is overcome by including the dominant flexural component of Dougall’s (1904) solution for a point load on the surface of a three dimensional isotropic, elastic layer. The augmented plate equations are arranged to fit the form of a consistent sixth order system of isotropic plate equations which include the well known work of Reissner and static equations of Mindlin. Numerical applications to two three dimensional problems with analytical solutions show good comparative results.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2019.12.021</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2020-05, Vol.191-192, p.497-508
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_journals_2440489586
source Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library
subjects Dougall
Elastic layers
Exact solutions
Explicit stresses and displacements
Flexural plate
Integral reciprocal formula
Lévy
Michell
Mindlin plates
Plate theory
Sixth order
Three dimensional analysis
Three-dimensional plate hole analysis
title Augmented Lévy–Michell equations for flexural plates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20L%C3%A9vy%E2%80%93Michell%20equations%20for%20flexural%20plates&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Robinson,%20Neville%20I.&rft.date=2020-05-15&rft.volume=191-192&rft.spage=497&rft.epage=508&rft.pages=497-508&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2019.12.021&rft_dat=%3Cproquest_cross%3E2440489586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440489586&rft_id=info:pmid/&rft_els_id=S0020768319305281&rfr_iscdi=true