Morphological effect and conductivity tunability of different regions in a single graphene film by surface steps

Surface step is a fascinating aspect of chemical vapor-deposited graphene. Although the Cu surface steps influence graphene nucleation, they limit the domain expansion at lower temperatures. In this study, we report surface steps and nanoscale surface roughness that can be used to control the electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2020-09, Vol.165, p.1-8
Hauptverfasser: Sandeepa Lakshad Wimalananda, Maddumage Don, Kim, Jae-Kwan, Lee, Ji-Myon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title Carbon (New York)
container_volume 165
creator Sandeepa Lakshad Wimalananda, Maddumage Don
Kim, Jae-Kwan
Lee, Ji-Myon
description Surface step is a fascinating aspect of chemical vapor-deposited graphene. Although the Cu surface steps influence graphene nucleation, they limit the domain expansion at lower temperatures. In this study, we report surface steps and nanoscale surface roughness that can be used to control the electrical properties of two regions in the same graphene film. Higher processing temperatures such as 1000 °C produced an ultra-smooth surface (below 0.1 nm roughness), whereas lower temperatures of 700 °C showed minimal step height due to lack of surface rearrangement. In order to introduce two different surface step conditions, the selected regions were individually subjected to electropolishing (smooth) and Ar plasma (nanoscale surface steps) treatments. At a moderate temperature of 800 °C, a smooth area eases diffusion-driven graphene growth, which results in a continuous film of monolayer graphene with better electrical properties (mobility ≈ 700 cm2/V). However, the region with surface steps showed no conductivity whereas Raman spectra confirmed the existence of multilayer graphene. This phenomenon was observed with fabricated graphene micro-ribbons at 800 °C; a 40 μm ribbon showed an approximate resistance of 3.5 kΩ mm−1. Most importantly, the resistance was precisely controlled by physical parameters of the ribbon or during graphene processing in a single film. [Display omitted]
doi_str_mv 10.1016/j.carbon.2020.04.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440487789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320303468</els_id><sourcerecordid>2440487789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-32cb4a54e7551e2614e459f7e260f2c2cb2360118dfa6af48a44d384c60aeca43</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8Bz6352jZ7EWTxC1a86Dmk6WQ3pZvUpBX235ulnj3NDPO-7zAPQreUlJTQ6r4rjY5N8CUjjJRElITxM7SgsuYFl2t6jhaEEFlUjPFLdJVSl0chqVig4T3EYR_6sHNG9xisBTNi7Vtsgm8nM7ofNx7xOHnduP7UBotbl2UR_Igj7FzwCTuPNU7O73rAu6iHPXjA1vUH3BxxmqLVBnAaYUjX6MLqPsHNX12ir-enz81rsf14eds8bgvDJB8Lzkwj9EpAvVpRYBUVIFZrW-eWWGbylvGKUCpbqytthdRCtFwKUxENRgu-RHdz7hDD9wRpVF2Yos8nFRMif1_Xcp1VYlaZGFKKYNUQ3UHHo6JEndiqTs1s1YmtIkJlttn2MNsgf_DjIKpkHHgDrYuZn2qD-z_gFx4dheY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440487789</pqid></control><display><type>article</type><title>Morphological effect and conductivity tunability of different regions in a single graphene film by surface steps</title><source>Elsevier ScienceDirect Journals</source><creator>Sandeepa Lakshad Wimalananda, Maddumage Don ; Kim, Jae-Kwan ; Lee, Ji-Myon</creator><creatorcontrib>Sandeepa Lakshad Wimalananda, Maddumage Don ; Kim, Jae-Kwan ; Lee, Ji-Myon</creatorcontrib><description>Surface step is a fascinating aspect of chemical vapor-deposited graphene. Although the Cu surface steps influence graphene nucleation, they limit the domain expansion at lower temperatures. In this study, we report surface steps and nanoscale surface roughness that can be used to control the electrical properties of two regions in the same graphene film. Higher processing temperatures such as 1000 °C produced an ultra-smooth surface (below 0.1 nm roughness), whereas lower temperatures of 700 °C showed minimal step height due to lack of surface rearrangement. In order to introduce two different surface step conditions, the selected regions were individually subjected to electropolishing (smooth) and Ar plasma (nanoscale surface steps) treatments. At a moderate temperature of 800 °C, a smooth area eases diffusion-driven graphene growth, which results in a continuous film of monolayer graphene with better electrical properties (mobility ≈ 700 cm2/V). However, the region with surface steps showed no conductivity whereas Raman spectra confirmed the existence of multilayer graphene. This phenomenon was observed with fabricated graphene micro-ribbons at 800 °C; a 40 μm ribbon showed an approximate resistance of 3.5 kΩ mm−1. Most importantly, the resistance was precisely controlled by physical parameters of the ribbon or during graphene processing in a single film. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.04.023</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Chemical vapor deposition ; Conductivity ; Electrical properties ; Electrical resistivity ; Graphene ; Graphite ; Mechanical properties ; Multilayers ; Nucleation ; Physical properties ; Raman spectra ; Surface roughness</subject><ispartof>Carbon (New York), 2020-09, Vol.165, p.1-8</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-32cb4a54e7551e2614e459f7e260f2c2cb2360118dfa6af48a44d384c60aeca43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622320303468$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sandeepa Lakshad Wimalananda, Maddumage Don</creatorcontrib><creatorcontrib>Kim, Jae-Kwan</creatorcontrib><creatorcontrib>Lee, Ji-Myon</creatorcontrib><title>Morphological effect and conductivity tunability of different regions in a single graphene film by surface steps</title><title>Carbon (New York)</title><description>Surface step is a fascinating aspect of chemical vapor-deposited graphene. Although the Cu surface steps influence graphene nucleation, they limit the domain expansion at lower temperatures. In this study, we report surface steps and nanoscale surface roughness that can be used to control the electrical properties of two regions in the same graphene film. Higher processing temperatures such as 1000 °C produced an ultra-smooth surface (below 0.1 nm roughness), whereas lower temperatures of 700 °C showed minimal step height due to lack of surface rearrangement. In order to introduce two different surface step conditions, the selected regions were individually subjected to electropolishing (smooth) and Ar plasma (nanoscale surface steps) treatments. At a moderate temperature of 800 °C, a smooth area eases diffusion-driven graphene growth, which results in a continuous film of monolayer graphene with better electrical properties (mobility ≈ 700 cm2/V). However, the region with surface steps showed no conductivity whereas Raman spectra confirmed the existence of multilayer graphene. This phenomenon was observed with fabricated graphene micro-ribbons at 800 °C; a 40 μm ribbon showed an approximate resistance of 3.5 kΩ mm−1. Most importantly, the resistance was precisely controlled by physical parameters of the ribbon or during graphene processing in a single film. [Display omitted]</description><subject>Chemical vapor deposition</subject><subject>Conductivity</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Mechanical properties</subject><subject>Multilayers</subject><subject>Nucleation</subject><subject>Physical properties</subject><subject>Raman spectra</subject><subject>Surface roughness</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw8Bz6352jZ7EWTxC1a86Dmk6WQ3pZvUpBX235ulnj3NDPO-7zAPQreUlJTQ6r4rjY5N8CUjjJRElITxM7SgsuYFl2t6jhaEEFlUjPFLdJVSl0chqVig4T3EYR_6sHNG9xisBTNi7Vtsgm8nM7ofNx7xOHnduP7UBotbl2UR_Igj7FzwCTuPNU7O73rAu6iHPXjA1vUH3BxxmqLVBnAaYUjX6MLqPsHNX12ir-enz81rsf14eds8bgvDJB8Lzkwj9EpAvVpRYBUVIFZrW-eWWGbylvGKUCpbqytthdRCtFwKUxENRgu-RHdz7hDD9wRpVF2Yos8nFRMif1_Xcp1VYlaZGFKKYNUQ3UHHo6JEndiqTs1s1YmtIkJlttn2MNsgf_DjIKpkHHgDrYuZn2qD-z_gFx4dheY</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Sandeepa Lakshad Wimalananda, Maddumage Don</creator><creator>Kim, Jae-Kwan</creator><creator>Lee, Ji-Myon</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200915</creationdate><title>Morphological effect and conductivity tunability of different regions in a single graphene film by surface steps</title><author>Sandeepa Lakshad Wimalananda, Maddumage Don ; Kim, Jae-Kwan ; Lee, Ji-Myon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-32cb4a54e7551e2614e459f7e260f2c2cb2360118dfa6af48a44d384c60aeca43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical vapor deposition</topic><topic>Conductivity</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Mechanical properties</topic><topic>Multilayers</topic><topic>Nucleation</topic><topic>Physical properties</topic><topic>Raman spectra</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandeepa Lakshad Wimalananda, Maddumage Don</creatorcontrib><creatorcontrib>Kim, Jae-Kwan</creatorcontrib><creatorcontrib>Lee, Ji-Myon</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandeepa Lakshad Wimalananda, Maddumage Don</au><au>Kim, Jae-Kwan</au><au>Lee, Ji-Myon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphological effect and conductivity tunability of different regions in a single graphene film by surface steps</atitle><jtitle>Carbon (New York)</jtitle><date>2020-09-15</date><risdate>2020</risdate><volume>165</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Surface step is a fascinating aspect of chemical vapor-deposited graphene. Although the Cu surface steps influence graphene nucleation, they limit the domain expansion at lower temperatures. In this study, we report surface steps and nanoscale surface roughness that can be used to control the electrical properties of two regions in the same graphene film. Higher processing temperatures such as 1000 °C produced an ultra-smooth surface (below 0.1 nm roughness), whereas lower temperatures of 700 °C showed minimal step height due to lack of surface rearrangement. In order to introduce two different surface step conditions, the selected regions were individually subjected to electropolishing (smooth) and Ar plasma (nanoscale surface steps) treatments. At a moderate temperature of 800 °C, a smooth area eases diffusion-driven graphene growth, which results in a continuous film of monolayer graphene with better electrical properties (mobility ≈ 700 cm2/V). However, the region with surface steps showed no conductivity whereas Raman spectra confirmed the existence of multilayer graphene. This phenomenon was observed with fabricated graphene micro-ribbons at 800 °C; a 40 μm ribbon showed an approximate resistance of 3.5 kΩ mm−1. Most importantly, the resistance was precisely controlled by physical parameters of the ribbon or during graphene processing in a single film. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.04.023</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2020-09, Vol.165, p.1-8
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2440487789
source Elsevier ScienceDirect Journals
subjects Chemical vapor deposition
Conductivity
Electrical properties
Electrical resistivity
Graphene
Graphite
Mechanical properties
Multilayers
Nucleation
Physical properties
Raman spectra
Surface roughness
title Morphological effect and conductivity tunability of different regions in a single graphene film by surface steps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphological%20effect%20and%20conductivity%20tunability%20of%20different%20regions%20in%20a%20single%20graphene%20film%20by%20surface%20steps&rft.jtitle=Carbon%20(New%20York)&rft.au=Sandeepa%20Lakshad%20Wimalananda,%20Maddumage%20Don&rft.date=2020-09-15&rft.volume=165&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.04.023&rft_dat=%3Cproquest_cross%3E2440487789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440487789&rft_id=info:pmid/&rft_els_id=S0008622320303468&rfr_iscdi=true