Experimental and numerical study on penetration-induced internal short-circuit of lithium-ion cell

•The mechanism of penetration-induced internal short-circuit of LIB is analyzed.•Penetration experiments, simulation, and separator thermal analysis are involved.•Two types of temperature rise modes are observed for thermal runaway case.•The Joule heat generated at short spot constitutes the most to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2020-05, Vol.171, p.115082, Article 115082
Hauptverfasser: Wang, Jionggeng, Mei, Wenxin, Cui, Zhixian, Shen, Weixiong, Duan, Qiangling, Jin, Yi, Nie, Jianbo, Tian, Yu, Wang, Qingsong, Sun, Jinhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115082
container_title Applied thermal engineering
container_volume 171
creator Wang, Jionggeng
Mei, Wenxin
Cui, Zhixian
Shen, Weixiong
Duan, Qiangling
Jin, Yi
Nie, Jianbo
Tian, Yu
Wang, Qingsong
Sun, Jinhua
description •The mechanism of penetration-induced internal short-circuit of LIB is analyzed.•Penetration experiments, simulation, and separator thermal analysis are involved.•Two types of temperature rise modes are observed for thermal runaway case.•The Joule heat generated at short spot constitutes the most to the total heat. Nail penetration test is an abuse test method to evaluate the thermal hazard of lithium-ion battery. The internal short-circuit is a direct cause of battery thermal runaway, while its mechanism has not been fully understood yet. In this work, the penetration-induced internal short-circuit of lithium-ion cell is studied through nail penetration experiments, numerical simulation, and cell separator thermal analysis. The results show that the nail plays a dual role in the penetration process for thermal runaway or non-thermal runaway cases, which determines the short-circuit current and heat dissipation. In addition, there are two types of temperature rise modes for thermal runaway case, the time intervals from the beginning of penetration to thermal runaway of these two modes are less than 5 s and 60 s, respectively. It can also be concluded that the cell terminal voltage is found to decay exponentially with time after penetration, while the fluctuations and rebound of terminal voltage during the nail penetration process are attributed to the partially interrupted internal short-circuit path. The results indicate that the Joule heat generated at short spot dominates the total heat generation inside lithium-ion cell with non-thermal runaway nail penetration cases.
doi_str_mv 10.1016/j.applthermaleng.2020.115082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440487666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431119377130</els_id><sourcerecordid>2440487666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-60297d0d33521083b8e85d32c46a17e9ca179321cb70860e8b2aeb95863fc5483</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-h4Jeu-ajTVPwIsuuCgte9BzSdOqmtGlNUnH_vSn14s3LfL4zzDwI3RG8IZjw-3ajxrELR3C96sB-bCimsUVyLOgZWhFRsDTnmJ_HmOVlmjFCLtGV9y3GhIoiW6Fq9z2CMz3YoLpE2TqxUx8LOmY-TPUpGWwygoXgVDCDTY2tJw11YmwAZ2fVcXAh1cbpyYRkaJLOhKOZ-jSqEw1dd40uGtV5uPn1a_S-371tn9PD69PL9vGQapaLkHJMy6LGNWM5JViwSoDIa0Z1xhUpoNTRlowSXRVYcAyiogqqMhecNTrPBFuj22Xv6IbPCXyQ7TDNJ3pJswxnouCcR9XDotJu8N5BI8f4vnInSbCcqcpW_qUqZ6pyoRrH98s4xE--DDjptQEbiRgHOsh6MP9b9AMT54oU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440487666</pqid></control><display><type>article</type><title>Experimental and numerical study on penetration-induced internal short-circuit of lithium-ion cell</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Jionggeng ; Mei, Wenxin ; Cui, Zhixian ; Shen, Weixiong ; Duan, Qiangling ; Jin, Yi ; Nie, Jianbo ; Tian, Yu ; Wang, Qingsong ; Sun, Jinhua</creator><creatorcontrib>Wang, Jionggeng ; Mei, Wenxin ; Cui, Zhixian ; Shen, Weixiong ; Duan, Qiangling ; Jin, Yi ; Nie, Jianbo ; Tian, Yu ; Wang, Qingsong ; Sun, Jinhua</creatorcontrib><description>•The mechanism of penetration-induced internal short-circuit of LIB is analyzed.•Penetration experiments, simulation, and separator thermal analysis are involved.•Two types of temperature rise modes are observed for thermal runaway case.•The Joule heat generated at short spot constitutes the most to the total heat. Nail penetration test is an abuse test method to evaluate the thermal hazard of lithium-ion battery. The internal short-circuit is a direct cause of battery thermal runaway, while its mechanism has not been fully understood yet. In this work, the penetration-induced internal short-circuit of lithium-ion cell is studied through nail penetration experiments, numerical simulation, and cell separator thermal analysis. The results show that the nail plays a dual role in the penetration process for thermal runaway or non-thermal runaway cases, which determines the short-circuit current and heat dissipation. In addition, there are two types of temperature rise modes for thermal runaway case, the time intervals from the beginning of penetration to thermal runaway of these two modes are less than 5 s and 60 s, respectively. It can also be concluded that the cell terminal voltage is found to decay exponentially with time after penetration, while the fluctuations and rebound of terminal voltage during the nail penetration process are attributed to the partially interrupted internal short-circuit path. The results indicate that the Joule heat generated at short spot dominates the total heat generation inside lithium-ion cell with non-thermal runaway nail penetration cases.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2020.115082</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Batteries ; Circuits ; Computer simulation ; Electric cells ; Electric potential ; Enthalpy ; Experiments ; Heat generation ; Internal short-circuit ; Lithium-ion batteries ; Lithium-ion battery safety ; Nail penetration ; Numerical analysis ; Penetration ; Rechargeable batteries ; Separators ; Short circuit currents ; Simulation ; Thermal analysis ; Thermal runaway ; Voltage</subject><ispartof>Applied thermal engineering, 2020-05, Vol.171, p.115082, Article 115082</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 5, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-60297d0d33521083b8e85d32c46a17e9ca179321cb70860e8b2aeb95863fc5483</citedby><cites>FETCH-LOGICAL-c358t-60297d0d33521083b8e85d32c46a17e9ca179321cb70860e8b2aeb95863fc5483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2020.115082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Jionggeng</creatorcontrib><creatorcontrib>Mei, Wenxin</creatorcontrib><creatorcontrib>Cui, Zhixian</creatorcontrib><creatorcontrib>Shen, Weixiong</creatorcontrib><creatorcontrib>Duan, Qiangling</creatorcontrib><creatorcontrib>Jin, Yi</creatorcontrib><creatorcontrib>Nie, Jianbo</creatorcontrib><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Wang, Qingsong</creatorcontrib><creatorcontrib>Sun, Jinhua</creatorcontrib><title>Experimental and numerical study on penetration-induced internal short-circuit of lithium-ion cell</title><title>Applied thermal engineering</title><description>•The mechanism of penetration-induced internal short-circuit of LIB is analyzed.•Penetration experiments, simulation, and separator thermal analysis are involved.•Two types of temperature rise modes are observed for thermal runaway case.•The Joule heat generated at short spot constitutes the most to the total heat. Nail penetration test is an abuse test method to evaluate the thermal hazard of lithium-ion battery. The internal short-circuit is a direct cause of battery thermal runaway, while its mechanism has not been fully understood yet. In this work, the penetration-induced internal short-circuit of lithium-ion cell is studied through nail penetration experiments, numerical simulation, and cell separator thermal analysis. The results show that the nail plays a dual role in the penetration process for thermal runaway or non-thermal runaway cases, which determines the short-circuit current and heat dissipation. In addition, there are two types of temperature rise modes for thermal runaway case, the time intervals from the beginning of penetration to thermal runaway of these two modes are less than 5 s and 60 s, respectively. It can also be concluded that the cell terminal voltage is found to decay exponentially with time after penetration, while the fluctuations and rebound of terminal voltage during the nail penetration process are attributed to the partially interrupted internal short-circuit path. The results indicate that the Joule heat generated at short spot dominates the total heat generation inside lithium-ion cell with non-thermal runaway nail penetration cases.</description><subject>Batteries</subject><subject>Circuits</subject><subject>Computer simulation</subject><subject>Electric cells</subject><subject>Electric potential</subject><subject>Enthalpy</subject><subject>Experiments</subject><subject>Heat generation</subject><subject>Internal short-circuit</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery safety</subject><subject>Nail penetration</subject><subject>Numerical analysis</subject><subject>Penetration</subject><subject>Rechargeable batteries</subject><subject>Separators</subject><subject>Short circuit currents</subject><subject>Simulation</subject><subject>Thermal analysis</subject><subject>Thermal runaway</subject><subject>Voltage</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK7-h4Jeu-ajTVPwIsuuCgte9BzSdOqmtGlNUnH_vSn14s3LfL4zzDwI3RG8IZjw-3ajxrELR3C96sB-bCimsUVyLOgZWhFRsDTnmJ_HmOVlmjFCLtGV9y3GhIoiW6Fq9z2CMz3YoLpE2TqxUx8LOmY-TPUpGWwygoXgVDCDTY2tJw11YmwAZ2fVcXAh1cbpyYRkaJLOhKOZ-jSqEw1dd40uGtV5uPn1a_S-371tn9PD69PL9vGQapaLkHJMy6LGNWM5JViwSoDIa0Z1xhUpoNTRlowSXRVYcAyiogqqMhecNTrPBFuj22Xv6IbPCXyQ7TDNJ3pJswxnouCcR9XDotJu8N5BI8f4vnInSbCcqcpW_qUqZ6pyoRrH98s4xE--DDjptQEbiRgHOsh6MP9b9AMT54oU</recordid><startdate>20200505</startdate><enddate>20200505</enddate><creator>Wang, Jionggeng</creator><creator>Mei, Wenxin</creator><creator>Cui, Zhixian</creator><creator>Shen, Weixiong</creator><creator>Duan, Qiangling</creator><creator>Jin, Yi</creator><creator>Nie, Jianbo</creator><creator>Tian, Yu</creator><creator>Wang, Qingsong</creator><creator>Sun, Jinhua</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20200505</creationdate><title>Experimental and numerical study on penetration-induced internal short-circuit of lithium-ion cell</title><author>Wang, Jionggeng ; Mei, Wenxin ; Cui, Zhixian ; Shen, Weixiong ; Duan, Qiangling ; Jin, Yi ; Nie, Jianbo ; Tian, Yu ; Wang, Qingsong ; Sun, Jinhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-60297d0d33521083b8e85d32c46a17e9ca179321cb70860e8b2aeb95863fc5483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batteries</topic><topic>Circuits</topic><topic>Computer simulation</topic><topic>Electric cells</topic><topic>Electric potential</topic><topic>Enthalpy</topic><topic>Experiments</topic><topic>Heat generation</topic><topic>Internal short-circuit</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery safety</topic><topic>Nail penetration</topic><topic>Numerical analysis</topic><topic>Penetration</topic><topic>Rechargeable batteries</topic><topic>Separators</topic><topic>Short circuit currents</topic><topic>Simulation</topic><topic>Thermal analysis</topic><topic>Thermal runaway</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jionggeng</creatorcontrib><creatorcontrib>Mei, Wenxin</creatorcontrib><creatorcontrib>Cui, Zhixian</creatorcontrib><creatorcontrib>Shen, Weixiong</creatorcontrib><creatorcontrib>Duan, Qiangling</creatorcontrib><creatorcontrib>Jin, Yi</creatorcontrib><creatorcontrib>Nie, Jianbo</creatorcontrib><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Wang, Qingsong</creatorcontrib><creatorcontrib>Sun, Jinhua</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jionggeng</au><au>Mei, Wenxin</au><au>Cui, Zhixian</au><au>Shen, Weixiong</au><au>Duan, Qiangling</au><au>Jin, Yi</au><au>Nie, Jianbo</au><au>Tian, Yu</au><au>Wang, Qingsong</au><au>Sun, Jinhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical study on penetration-induced internal short-circuit of lithium-ion cell</atitle><jtitle>Applied thermal engineering</jtitle><date>2020-05-05</date><risdate>2020</risdate><volume>171</volume><spage>115082</spage><pages>115082-</pages><artnum>115082</artnum><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•The mechanism of penetration-induced internal short-circuit of LIB is analyzed.•Penetration experiments, simulation, and separator thermal analysis are involved.•Two types of temperature rise modes are observed for thermal runaway case.•The Joule heat generated at short spot constitutes the most to the total heat. Nail penetration test is an abuse test method to evaluate the thermal hazard of lithium-ion battery. The internal short-circuit is a direct cause of battery thermal runaway, while its mechanism has not been fully understood yet. In this work, the penetration-induced internal short-circuit of lithium-ion cell is studied through nail penetration experiments, numerical simulation, and cell separator thermal analysis. The results show that the nail plays a dual role in the penetration process for thermal runaway or non-thermal runaway cases, which determines the short-circuit current and heat dissipation. In addition, there are two types of temperature rise modes for thermal runaway case, the time intervals from the beginning of penetration to thermal runaway of these two modes are less than 5 s and 60 s, respectively. It can also be concluded that the cell terminal voltage is found to decay exponentially with time after penetration, while the fluctuations and rebound of terminal voltage during the nail penetration process are attributed to the partially interrupted internal short-circuit path. The results indicate that the Joule heat generated at short spot dominates the total heat generation inside lithium-ion cell with non-thermal runaway nail penetration cases.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2020.115082</doi></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2020-05, Vol.171, p.115082, Article 115082
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2440487666
source Elsevier ScienceDirect Journals Complete
subjects Batteries
Circuits
Computer simulation
Electric cells
Electric potential
Enthalpy
Experiments
Heat generation
Internal short-circuit
Lithium-ion batteries
Lithium-ion battery safety
Nail penetration
Numerical analysis
Penetration
Rechargeable batteries
Separators
Short circuit currents
Simulation
Thermal analysis
Thermal runaway
Voltage
title Experimental and numerical study on penetration-induced internal short-circuit of lithium-ion cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20study%20on%20penetration-induced%20internal%20short-circuit%20of%20lithium-ion%20cell&rft.jtitle=Applied%20thermal%20engineering&rft.au=Wang,%20Jionggeng&rft.date=2020-05-05&rft.volume=171&rft.spage=115082&rft.pages=115082-&rft.artnum=115082&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2020.115082&rft_dat=%3Cproquest_cross%3E2440487666%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440487666&rft_id=info:pmid/&rft_els_id=S1359431119377130&rfr_iscdi=true