Regulating Charge Transfer of Lattice Oxygen in Single‐Atom‐Doped Titania for Hydrogen Evolution

Single‐atom catalysts have attracted much attention. Reported herein is that regulating charge transfer of lattice oxygen atoms in serial single‐atom‐doped titania enables tunable hydrogen evolution reaction (HER) activity. First‐principles calculations disclose that the activity of lattice oxygen f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2020-09, Vol.132 (37), p.15989-15993
Hauptverfasser: Yi, Ding, Lu, Fei, Zhang, Fengchu, Liu, Shoujie, Zhou, Bo, Gao, Denglei, Wang, Xi, Yao, Jiannian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15993
container_issue 37
container_start_page 15989
container_title Angewandte Chemie
container_volume 132
creator Yi, Ding
Lu, Fei
Zhang, Fengchu
Liu, Shoujie
Zhou, Bo
Gao, Denglei
Wang, Xi
Yao, Jiannian
description Single‐atom catalysts have attracted much attention. Reported herein is that regulating charge transfer of lattice oxygen atoms in serial single‐atom‐doped titania enables tunable hydrogen evolution reaction (HER) activity. First‐principles calculations disclose that the activity of lattice oxygen for the HER can be regularly promoted by substituting its nearest metal atom, and doping‐induced charge transfer plays an essential role. Besides, the realm of the charge transfer of the active site can be enlarged to the second nearest atom by creating oxygen vacancies, resulting in further optimization for the HER. Various single‐atom‐doped titania nanosheets were fabricated to validate the proposed model. Taking advantage of the localized charge transfer to the lattice atom is demonstrated to be feasible for realizing precise regulation of the electronic structures and thus catalytic activity of the nanosheets. Listen to HER tune: Regulating charge transfer by doping with single transition‐metal atoms and making oxygen vacancies on a TiO2 nanosheet is reported. These approaches modulate the activity of the lattice oxygen atom in titania, providing a way to tune and thus optimize catalysis of the hydrogen evolution reaction (HER).
doi_str_mv 10.1002/ange.202004510
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440447353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440447353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2320-3896e758aa98270e1bd70dc70cc8699f991c458409dfcb3733eb3651f401fcff3</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhQdRsFa3rgdcp975SSazLLW2QrGgdR2mk5k4Jc3USaJm5yP4jD6JKRVdujpw-c658CF0SWBEAOi1qgozokABeEzgCA1ITEnERCyO0aA_8iilXJ6is7reAEBChRyg_MEUbakaVxV48qxCYfAqqKq2JmBv8UI1jdMGL9-7wlTYVfixJ0vz9fE5bvy2jxu_MzleuUZVTmHrA553efB7evrqy7ZxvjpHJ1aVtbn4ySF6up2uJvNosZzdTcaLSFNGIWKpTIyIU6VkSgUYss4F5FqA1mkipZWSaB6nHGRu9ZoJxsyaJTGxHIjV1rIhujrs7oJ_aU3dZBvfhqp_mVHOewOCxaynRgdKB1_XwdhsF9xWhS4jkO1NZnuT2a_JviAPhTdXmu4fOhvfz6Z_3W-wTnlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440447353</pqid></control><display><type>article</type><title>Regulating Charge Transfer of Lattice Oxygen in Single‐Atom‐Doped Titania for Hydrogen Evolution</title><source>Wiley-Blackwell Journals</source><creator>Yi, Ding ; Lu, Fei ; Zhang, Fengchu ; Liu, Shoujie ; Zhou, Bo ; Gao, Denglei ; Wang, Xi ; Yao, Jiannian</creator><creatorcontrib>Yi, Ding ; Lu, Fei ; Zhang, Fengchu ; Liu, Shoujie ; Zhou, Bo ; Gao, Denglei ; Wang, Xi ; Yao, Jiannian</creatorcontrib><description>Single‐atom catalysts have attracted much attention. Reported herein is that regulating charge transfer of lattice oxygen atoms in serial single‐atom‐doped titania enables tunable hydrogen evolution reaction (HER) activity. First‐principles calculations disclose that the activity of lattice oxygen for the HER can be regularly promoted by substituting its nearest metal atom, and doping‐induced charge transfer plays an essential role. Besides, the realm of the charge transfer of the active site can be enlarged to the second nearest atom by creating oxygen vacancies, resulting in further optimization for the HER. Various single‐atom‐doped titania nanosheets were fabricated to validate the proposed model. Taking advantage of the localized charge transfer to the lattice atom is demonstrated to be feasible for realizing precise regulation of the electronic structures and thus catalytic activity of the nanosheets. Listen to HER tune: Regulating charge transfer by doping with single transition‐metal atoms and making oxygen vacancies on a TiO2 nanosheet is reported. These approaches modulate the activity of the lattice oxygen atom in titania, providing a way to tune and thus optimize catalysis of the hydrogen evolution reaction (HER).</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202004510</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Catalytic activity ; Charge transfer ; Chemistry ; coordination modes ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Lattice vacancies ; Nanostructure ; Optimization ; Oxygen ; Oxygen atoms ; single-atom catalysis ; titanium ; Titanium dioxide</subject><ispartof>Angewandte Chemie, 2020-09, Vol.132 (37), p.15989-15993</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2320-3896e758aa98270e1bd70dc70cc8699f991c458409dfcb3733eb3651f401fcff3</citedby><cites>FETCH-LOGICAL-c2320-3896e758aa98270e1bd70dc70cc8699f991c458409dfcb3733eb3651f401fcff3</cites><orcidid>0000-0003-3910-9575 ; 0000-0001-9294-8760 ; 0000-0001-5505-1911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202004510$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202004510$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Yi, Ding</creatorcontrib><creatorcontrib>Lu, Fei</creatorcontrib><creatorcontrib>Zhang, Fengchu</creatorcontrib><creatorcontrib>Liu, Shoujie</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Gao, Denglei</creatorcontrib><creatorcontrib>Wang, Xi</creatorcontrib><creatorcontrib>Yao, Jiannian</creatorcontrib><title>Regulating Charge Transfer of Lattice Oxygen in Single‐Atom‐Doped Titania for Hydrogen Evolution</title><title>Angewandte Chemie</title><description>Single‐atom catalysts have attracted much attention. Reported herein is that regulating charge transfer of lattice oxygen atoms in serial single‐atom‐doped titania enables tunable hydrogen evolution reaction (HER) activity. First‐principles calculations disclose that the activity of lattice oxygen for the HER can be regularly promoted by substituting its nearest metal atom, and doping‐induced charge transfer plays an essential role. Besides, the realm of the charge transfer of the active site can be enlarged to the second nearest atom by creating oxygen vacancies, resulting in further optimization for the HER. Various single‐atom‐doped titania nanosheets were fabricated to validate the proposed model. Taking advantage of the localized charge transfer to the lattice atom is demonstrated to be feasible for realizing precise regulation of the electronic structures and thus catalytic activity of the nanosheets. Listen to HER tune: Regulating charge transfer by doping with single transition‐metal atoms and making oxygen vacancies on a TiO2 nanosheet is reported. These approaches modulate the activity of the lattice oxygen atom in titania, providing a way to tune and thus optimize catalysis of the hydrogen evolution reaction (HER).</description><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>coordination modes</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Lattice vacancies</subject><subject>Nanostructure</subject><subject>Optimization</subject><subject>Oxygen</subject><subject>Oxygen atoms</subject><subject>single-atom catalysis</subject><subject>titanium</subject><subject>Titanium dioxide</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AUhQdRsFa3rgdcp975SSazLLW2QrGgdR2mk5k4Jc3USaJm5yP4jD6JKRVdujpw-c658CF0SWBEAOi1qgozokABeEzgCA1ITEnERCyO0aA_8iilXJ6is7reAEBChRyg_MEUbakaVxV48qxCYfAqqKq2JmBv8UI1jdMGL9-7wlTYVfixJ0vz9fE5bvy2jxu_MzleuUZVTmHrA553efB7evrqy7ZxvjpHJ1aVtbn4ySF6up2uJvNosZzdTcaLSFNGIWKpTIyIU6VkSgUYss4F5FqA1mkipZWSaB6nHGRu9ZoJxsyaJTGxHIjV1rIhujrs7oJ_aU3dZBvfhqp_mVHOewOCxaynRgdKB1_XwdhsF9xWhS4jkO1NZnuT2a_JviAPhTdXmu4fOhvfz6Z_3W-wTnlg</recordid><startdate>20200907</startdate><enddate>20200907</enddate><creator>Yi, Ding</creator><creator>Lu, Fei</creator><creator>Zhang, Fengchu</creator><creator>Liu, Shoujie</creator><creator>Zhou, Bo</creator><creator>Gao, Denglei</creator><creator>Wang, Xi</creator><creator>Yao, Jiannian</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3910-9575</orcidid><orcidid>https://orcid.org/0000-0001-9294-8760</orcidid><orcidid>https://orcid.org/0000-0001-5505-1911</orcidid></search><sort><creationdate>20200907</creationdate><title>Regulating Charge Transfer of Lattice Oxygen in Single‐Atom‐Doped Titania for Hydrogen Evolution</title><author>Yi, Ding ; Lu, Fei ; Zhang, Fengchu ; Liu, Shoujie ; Zhou, Bo ; Gao, Denglei ; Wang, Xi ; Yao, Jiannian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2320-3896e758aa98270e1bd70dc70cc8699f991c458409dfcb3733eb3651f401fcff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>coordination modes</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Lattice vacancies</topic><topic>Nanostructure</topic><topic>Optimization</topic><topic>Oxygen</topic><topic>Oxygen atoms</topic><topic>single-atom catalysis</topic><topic>titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Ding</creatorcontrib><creatorcontrib>Lu, Fei</creatorcontrib><creatorcontrib>Zhang, Fengchu</creatorcontrib><creatorcontrib>Liu, Shoujie</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Gao, Denglei</creatorcontrib><creatorcontrib>Wang, Xi</creatorcontrib><creatorcontrib>Yao, Jiannian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Ding</au><au>Lu, Fei</au><au>Zhang, Fengchu</au><au>Liu, Shoujie</au><au>Zhou, Bo</au><au>Gao, Denglei</au><au>Wang, Xi</au><au>Yao, Jiannian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulating Charge Transfer of Lattice Oxygen in Single‐Atom‐Doped Titania for Hydrogen Evolution</atitle><jtitle>Angewandte Chemie</jtitle><date>2020-09-07</date><risdate>2020</risdate><volume>132</volume><issue>37</issue><spage>15989</spage><epage>15993</epage><pages>15989-15993</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Single‐atom catalysts have attracted much attention. Reported herein is that regulating charge transfer of lattice oxygen atoms in serial single‐atom‐doped titania enables tunable hydrogen evolution reaction (HER) activity. First‐principles calculations disclose that the activity of lattice oxygen for the HER can be regularly promoted by substituting its nearest metal atom, and doping‐induced charge transfer plays an essential role. Besides, the realm of the charge transfer of the active site can be enlarged to the second nearest atom by creating oxygen vacancies, resulting in further optimization for the HER. Various single‐atom‐doped titania nanosheets were fabricated to validate the proposed model. Taking advantage of the localized charge transfer to the lattice atom is demonstrated to be feasible for realizing precise regulation of the electronic structures and thus catalytic activity of the nanosheets. Listen to HER tune: Regulating charge transfer by doping with single transition‐metal atoms and making oxygen vacancies on a TiO2 nanosheet is reported. These approaches modulate the activity of the lattice oxygen atom in titania, providing a way to tune and thus optimize catalysis of the hydrogen evolution reaction (HER).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202004510</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3910-9575</orcidid><orcidid>https://orcid.org/0000-0001-9294-8760</orcidid><orcidid>https://orcid.org/0000-0001-5505-1911</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2020-09, Vol.132 (37), p.15989-15993
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2440447353
source Wiley-Blackwell Journals
subjects Catalysts
Catalytic activity
Charge transfer
Chemistry
coordination modes
hydrogen evolution reaction
Hydrogen evolution reactions
Lattice vacancies
Nanostructure
Optimization
Oxygen
Oxygen atoms
single-atom catalysis
titanium
Titanium dioxide
title Regulating Charge Transfer of Lattice Oxygen in Single‐Atom‐Doped Titania for Hydrogen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulating%20Charge%20Transfer%20of%20Lattice%20Oxygen%20in%20Single%E2%80%90Atom%E2%80%90Doped%20Titania%20for%20Hydrogen%20Evolution&rft.jtitle=Angewandte%20Chemie&rft.au=Yi,%20Ding&rft.date=2020-09-07&rft.volume=132&rft.issue=37&rft.spage=15989&rft.epage=15993&rft.pages=15989-15993&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202004510&rft_dat=%3Cproquest_cross%3E2440447353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440447353&rft_id=info:pmid/&rfr_iscdi=true