Thermomagnetic Properties of Dy0.9Ho0.1MnO3 Multiferroics
Holmium (Ho)‐doped DyMnO3 multiferroic compound is prepared using conventional solid‐state reaction route, and X‐ray powder diffraction analysis is conducted to confirm the single‐phase structure. Coexistence of magnetic and electric behavior in case of multiferroics is analyzed by heat capacity mea...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2020-09, Vol.217 (17), p.n/a, Article 2000138 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 17 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 217 |
creator | Naini, Pavan Kumar Satapathy, Jyotirmayee Abhinav, Etyala Meher Srinivas, Adiraj Raja, Muthuvel Manivel |
description | Holmium (Ho)‐doped DyMnO3 multiferroic compound is prepared using conventional solid‐state reaction route, and X‐ray powder diffraction analysis is conducted to confirm the single‐phase structure. Coexistence of magnetic and electric behavior in case of multiferroics is analyzed by heat capacity measurements from low temperature (2 K) to room temperature (300 K) under different magnetic fields. Herein, the existence antiferromagnetic and ferroelectric phase transitions in this compound at |
doi_str_mv | 10.1002/pssa.202000138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2440440095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440440095</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2338-ff49cb2a236d24a979d391af8b708999c9421de352d04e9f347508994d5d90213</originalsourceid><addsrcrecordid>eNqNUU1Lw0AQXUTBWr16DniU1NmvJnuU-FGhpYXW87JNdnVLm427CdJ_74aWnIWBmWHemwfvIXSPYYIByFMTgpoQIACAaX6BRjifknRKsbgcZoBrdBPCDoBxluEREptv7Q_uoL5q3doyWXnXaN9aHRJnkpcjTMTMRYFFvaTJotu31mjvnS3DLboyah_03bmP0efb66aYpfPl-0fxPE8bQmmeGsNEuSWK0GlFmBKZqKjAyuTbDHIhRCkYwZWmnFTAtDCUZbw_sIpXAgimY_Rw-tt499Pp0Mqd63wdJSVhDGKB4BH1eEL96q0zobS6LrVsvD0of5TREh5lOERw784Y5f9HF7ZVrXV14bq6jVRxptq9Pg4cDLIPQfYhyCEEuVqvn4eN_gHt73hI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440440095</pqid></control><display><type>article</type><title>Thermomagnetic Properties of Dy0.9Ho0.1MnO3 Multiferroics</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Naini, Pavan Kumar ; Satapathy, Jyotirmayee ; Abhinav, Etyala Meher ; Srinivas, Adiraj ; Raja, Muthuvel Manivel</creator><creatorcontrib>Naini, Pavan Kumar ; Satapathy, Jyotirmayee ; Abhinav, Etyala Meher ; Srinivas, Adiraj ; Raja, Muthuvel Manivel</creatorcontrib><description>Holmium (Ho)‐doped DyMnO3 multiferroic compound is prepared using conventional solid‐state reaction route, and X‐ray powder diffraction analysis is conducted to confirm the single‐phase structure. Coexistence of magnetic and electric behavior in case of multiferroics is analyzed by heat capacity measurements from low temperature (2 K) to room temperature (300 K) under different magnetic fields. Herein, the existence antiferromagnetic and ferroelectric phase transitions in this compound at <10, 18, and 40 K, respectively, is revealed, which are attributed to the structural ordering or alignment of Mn3+ ions and R3+ ions. The magnetocaloric effect of this sample is also studied from heat capacity measurements. A maximum magnetic entropy change (ΔS)M of ≈6.3 J kg−1 K−1 and adiabatic temperature change (ΔT)ad of 3–4 K is achieved in 0.1Ho‐doped compound for a magnetic field change of 5 T and useful for low‐temperature magnetic refrigeration applications.
Dy0.9Ho0.1MnO3 prepared using solid‐state reaction route is found to exhibit the coexistence of magnetic and electric behavior at low temperature, particularly, antiferromagnetic and ferroelectric behavior at <10, 18, and 40 K. Further, magnetocaloric properties viz. magnetic entropy change (ΔS)M of ≈6.3 J kg−1 K−1 and adiabatic temperature change (ΔT)ad of 3–4 K are measured under 5 T.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202000138</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Antiferromagnetism ; Ferroelectricity ; heat capacity ; Holmium ; Low temperature ; low temperature magnetization ; Magnetic fields ; magnetocaloric effects ; Manganese ions ; Materials Science ; Materials Science, Multidisciplinary ; Multiferroic materials ; multiferroics ; Phase transitions ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Room temperature ; Science & Technology ; Solid phases ; Specific heat ; Technology</subject><ispartof>Physica status solidi. A, Applications and materials science, 2020-09, Vol.217 (17), p.n/a, Article 2000138</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000542150400001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p2338-ff49cb2a236d24a979d391af8b708999c9421de352d04e9f347508994d5d90213</cites><orcidid>0000-0002-1040-8064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202000138$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202000138$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,28257,45583,45584</link.rule.ids></links><search><creatorcontrib>Naini, Pavan Kumar</creatorcontrib><creatorcontrib>Satapathy, Jyotirmayee</creatorcontrib><creatorcontrib>Abhinav, Etyala Meher</creatorcontrib><creatorcontrib>Srinivas, Adiraj</creatorcontrib><creatorcontrib>Raja, Muthuvel Manivel</creatorcontrib><title>Thermomagnetic Properties of Dy0.9Ho0.1MnO3 Multiferroics</title><title>Physica status solidi. A, Applications and materials science</title><addtitle>PHYS STATUS SOLIDI A</addtitle><description>Holmium (Ho)‐doped DyMnO3 multiferroic compound is prepared using conventional solid‐state reaction route, and X‐ray powder diffraction analysis is conducted to confirm the single‐phase structure. Coexistence of magnetic and electric behavior in case of multiferroics is analyzed by heat capacity measurements from low temperature (2 K) to room temperature (300 K) under different magnetic fields. Herein, the existence antiferromagnetic and ferroelectric phase transitions in this compound at <10, 18, and 40 K, respectively, is revealed, which are attributed to the structural ordering or alignment of Mn3+ ions and R3+ ions. The magnetocaloric effect of this sample is also studied from heat capacity measurements. A maximum magnetic entropy change (ΔS)M of ≈6.3 J kg−1 K−1 and adiabatic temperature change (ΔT)ad of 3–4 K is achieved in 0.1Ho‐doped compound for a magnetic field change of 5 T and useful for low‐temperature magnetic refrigeration applications.
Dy0.9Ho0.1MnO3 prepared using solid‐state reaction route is found to exhibit the coexistence of magnetic and electric behavior at low temperature, particularly, antiferromagnetic and ferroelectric behavior at <10, 18, and 40 K. Further, magnetocaloric properties viz. magnetic entropy change (ΔS)M of ≈6.3 J kg−1 K−1 and adiabatic temperature change (ΔT)ad of 3–4 K are measured under 5 T.</description><subject>Antiferromagnetism</subject><subject>Ferroelectricity</subject><subject>heat capacity</subject><subject>Holmium</subject><subject>Low temperature</subject><subject>low temperature magnetization</subject><subject>Magnetic fields</subject><subject>magnetocaloric effects</subject><subject>Manganese ions</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Multiferroic materials</subject><subject>multiferroics</subject><subject>Phase transitions</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Room temperature</subject><subject>Science & Technology</subject><subject>Solid phases</subject><subject>Specific heat</subject><subject>Technology</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNUU1Lw0AQXUTBWr16DniU1NmvJnuU-FGhpYXW87JNdnVLm427CdJ_74aWnIWBmWHemwfvIXSPYYIByFMTgpoQIACAaX6BRjifknRKsbgcZoBrdBPCDoBxluEREptv7Q_uoL5q3doyWXnXaN9aHRJnkpcjTMTMRYFFvaTJotu31mjvnS3DLboyah_03bmP0efb66aYpfPl-0fxPE8bQmmeGsNEuSWK0GlFmBKZqKjAyuTbDHIhRCkYwZWmnFTAtDCUZbw_sIpXAgimY_Rw-tt499Pp0Mqd63wdJSVhDGKB4BH1eEL96q0zobS6LrVsvD0of5TREh5lOERw784Y5f9HF7ZVrXV14bq6jVRxptq9Pg4cDLIPQfYhyCEEuVqvn4eN_gHt73hI</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Naini, Pavan Kumar</creator><creator>Satapathy, Jyotirmayee</creator><creator>Abhinav, Etyala Meher</creator><creator>Srinivas, Adiraj</creator><creator>Raja, Muthuvel Manivel</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1040-8064</orcidid></search><sort><creationdate>202009</creationdate><title>Thermomagnetic Properties of Dy0.9Ho0.1MnO3 Multiferroics</title><author>Naini, Pavan Kumar ; Satapathy, Jyotirmayee ; Abhinav, Etyala Meher ; Srinivas, Adiraj ; Raja, Muthuvel Manivel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2338-ff49cb2a236d24a979d391af8b708999c9421de352d04e9f347508994d5d90213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiferromagnetism</topic><topic>Ferroelectricity</topic><topic>heat capacity</topic><topic>Holmium</topic><topic>Low temperature</topic><topic>low temperature magnetization</topic><topic>Magnetic fields</topic><topic>magnetocaloric effects</topic><topic>Manganese ions</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Multiferroic materials</topic><topic>multiferroics</topic><topic>Phase transitions</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Room temperature</topic><topic>Science & Technology</topic><topic>Solid phases</topic><topic>Specific heat</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naini, Pavan Kumar</creatorcontrib><creatorcontrib>Satapathy, Jyotirmayee</creatorcontrib><creatorcontrib>Abhinav, Etyala Meher</creatorcontrib><creatorcontrib>Srinivas, Adiraj</creatorcontrib><creatorcontrib>Raja, Muthuvel Manivel</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naini, Pavan Kumar</au><au>Satapathy, Jyotirmayee</au><au>Abhinav, Etyala Meher</au><au>Srinivas, Adiraj</au><au>Raja, Muthuvel Manivel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermomagnetic Properties of Dy0.9Ho0.1MnO3 Multiferroics</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><stitle>PHYS STATUS SOLIDI A</stitle><date>2020-09</date><risdate>2020</risdate><volume>217</volume><issue>17</issue><epage>n/a</epage><artnum>2000138</artnum><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Holmium (Ho)‐doped DyMnO3 multiferroic compound is prepared using conventional solid‐state reaction route, and X‐ray powder diffraction analysis is conducted to confirm the single‐phase structure. Coexistence of magnetic and electric behavior in case of multiferroics is analyzed by heat capacity measurements from low temperature (2 K) to room temperature (300 K) under different magnetic fields. Herein, the existence antiferromagnetic and ferroelectric phase transitions in this compound at <10, 18, and 40 K, respectively, is revealed, which are attributed to the structural ordering or alignment of Mn3+ ions and R3+ ions. The magnetocaloric effect of this sample is also studied from heat capacity measurements. A maximum magnetic entropy change (ΔS)M of ≈6.3 J kg−1 K−1 and adiabatic temperature change (ΔT)ad of 3–4 K is achieved in 0.1Ho‐doped compound for a magnetic field change of 5 T and useful for low‐temperature magnetic refrigeration applications.
Dy0.9Ho0.1MnO3 prepared using solid‐state reaction route is found to exhibit the coexistence of magnetic and electric behavior at low temperature, particularly, antiferromagnetic and ferroelectric behavior at <10, 18, and 40 K. Further, magnetocaloric properties viz. magnetic entropy change (ΔS)M of ≈6.3 J kg−1 K−1 and adiabatic temperature change (ΔT)ad of 3–4 K are measured under 5 T.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/pssa.202000138</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1040-8064</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2020-09, Vol.217 (17), p.n/a, Article 2000138 |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2440440095 |
source | Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Antiferromagnetism Ferroelectricity heat capacity Holmium Low temperature low temperature magnetization Magnetic fields magnetocaloric effects Manganese ions Materials Science Materials Science, Multidisciplinary Multiferroic materials multiferroics Phase transitions Physical Sciences Physics Physics, Applied Physics, Condensed Matter Room temperature Science & Technology Solid phases Specific heat Technology |
title | Thermomagnetic Properties of Dy0.9Ho0.1MnO3 Multiferroics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T09%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermomagnetic%20Properties%20of%20Dy0.9Ho0.1MnO3%20Multiferroics&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Naini,%20Pavan%20Kumar&rft.date=2020-09&rft.volume=217&rft.issue=17&rft.epage=n/a&rft.artnum=2000138&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202000138&rft_dat=%3Cproquest_wiley%3E2440440095%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440440095&rft_id=info:pmid/&rfr_iscdi=true |