Thermomagnetic Properties of Dy0.9Ho0.1MnO3 Multiferroics

Holmium (Ho)‐doped DyMnO3 multiferroic compound is prepared using conventional solid‐state reaction route, and X‐ray powder diffraction analysis is conducted to confirm the single‐phase structure. Coexistence of magnetic and electric behavior in case of multiferroics is analyzed by heat capacity mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2020-09, Vol.217 (17), p.n/a, Article 2000138
Hauptverfasser: Naini, Pavan Kumar, Satapathy, Jyotirmayee, Abhinav, Etyala Meher, Srinivas, Adiraj, Raja, Muthuvel Manivel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 17
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 217
creator Naini, Pavan Kumar
Satapathy, Jyotirmayee
Abhinav, Etyala Meher
Srinivas, Adiraj
Raja, Muthuvel Manivel
description Holmium (Ho)‐doped DyMnO3 multiferroic compound is prepared using conventional solid‐state reaction route, and X‐ray powder diffraction analysis is conducted to confirm the single‐phase structure. Coexistence of magnetic and electric behavior in case of multiferroics is analyzed by heat capacity measurements from low temperature (2 K) to room temperature (300 K) under different magnetic fields. Herein, the existence antiferromagnetic and ferroelectric phase transitions in this compound at
doi_str_mv 10.1002/pssa.202000138
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2440440095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440440095</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2338-ff49cb2a236d24a979d391af8b708999c9421de352d04e9f347508994d5d90213</originalsourceid><addsrcrecordid>eNqNUU1Lw0AQXUTBWr16DniU1NmvJnuU-FGhpYXW87JNdnVLm427CdJ_74aWnIWBmWHemwfvIXSPYYIByFMTgpoQIACAaX6BRjifknRKsbgcZoBrdBPCDoBxluEREptv7Q_uoL5q3doyWXnXaN9aHRJnkpcjTMTMRYFFvaTJotu31mjvnS3DLboyah_03bmP0efb66aYpfPl-0fxPE8bQmmeGsNEuSWK0GlFmBKZqKjAyuTbDHIhRCkYwZWmnFTAtDCUZbw_sIpXAgimY_Rw-tt499Pp0Mqd63wdJSVhDGKB4BH1eEL96q0zobS6LrVsvD0of5TREh5lOERw784Y5f9HF7ZVrXV14bq6jVRxptq9Pg4cDLIPQfYhyCEEuVqvn4eN_gHt73hI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440440095</pqid></control><display><type>article</type><title>Thermomagnetic Properties of Dy0.9Ho0.1MnO3 Multiferroics</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Naini, Pavan Kumar ; Satapathy, Jyotirmayee ; Abhinav, Etyala Meher ; Srinivas, Adiraj ; Raja, Muthuvel Manivel</creator><creatorcontrib>Naini, Pavan Kumar ; Satapathy, Jyotirmayee ; Abhinav, Etyala Meher ; Srinivas, Adiraj ; Raja, Muthuvel Manivel</creatorcontrib><description>Holmium (Ho)‐doped DyMnO3 multiferroic compound is prepared using conventional solid‐state reaction route, and X‐ray powder diffraction analysis is conducted to confirm the single‐phase structure. Coexistence of magnetic and electric behavior in case of multiferroics is analyzed by heat capacity measurements from low temperature (2 K) to room temperature (300 K) under different magnetic fields. Herein, the existence antiferromagnetic and ferroelectric phase transitions in this compound at &lt;10, 18, and 40 K, respectively, is revealed, which are attributed to the structural ordering or alignment of Mn3+ ions and R3+ ions. The magnetocaloric effect of this sample is also studied from heat capacity measurements. A maximum magnetic entropy change (ΔS)M of ≈6.3 J kg−1 K−1 and adiabatic temperature change (ΔT)ad of 3–4 K is achieved in 0.1Ho‐doped compound for a magnetic field change of 5 T and useful for low‐temperature magnetic refrigeration applications. Dy0.9Ho0.1MnO3 prepared using solid‐state reaction route is found to exhibit the coexistence of magnetic and electric behavior at low temperature, particularly, antiferromagnetic and ferroelectric behavior at &lt;10, 18, and 40 K. Further, magnetocaloric properties viz. magnetic entropy change (ΔS)M of ≈6.3 J kg−1 K−1 and adiabatic temperature change (ΔT)ad of 3–4 K are measured under 5 T.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202000138</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Antiferromagnetism ; Ferroelectricity ; heat capacity ; Holmium ; Low temperature ; low temperature magnetization ; Magnetic fields ; magnetocaloric effects ; Manganese ions ; Materials Science ; Materials Science, Multidisciplinary ; Multiferroic materials ; multiferroics ; Phase transitions ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Room temperature ; Science &amp; Technology ; Solid phases ; Specific heat ; Technology</subject><ispartof>Physica status solidi. A, Applications and materials science, 2020-09, Vol.217 (17), p.n/a, Article 2000138</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000542150400001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p2338-ff49cb2a236d24a979d391af8b708999c9421de352d04e9f347508994d5d90213</cites><orcidid>0000-0002-1040-8064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202000138$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202000138$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,28257,45583,45584</link.rule.ids></links><search><creatorcontrib>Naini, Pavan Kumar</creatorcontrib><creatorcontrib>Satapathy, Jyotirmayee</creatorcontrib><creatorcontrib>Abhinav, Etyala Meher</creatorcontrib><creatorcontrib>Srinivas, Adiraj</creatorcontrib><creatorcontrib>Raja, Muthuvel Manivel</creatorcontrib><title>Thermomagnetic Properties of Dy0.9Ho0.1MnO3 Multiferroics</title><title>Physica status solidi. A, Applications and materials science</title><addtitle>PHYS STATUS SOLIDI A</addtitle><description>Holmium (Ho)‐doped DyMnO3 multiferroic compound is prepared using conventional solid‐state reaction route, and X‐ray powder diffraction analysis is conducted to confirm the single‐phase structure. Coexistence of magnetic and electric behavior in case of multiferroics is analyzed by heat capacity measurements from low temperature (2 K) to room temperature (300 K) under different magnetic fields. Herein, the existence antiferromagnetic and ferroelectric phase transitions in this compound at &lt;10, 18, and 40 K, respectively, is revealed, which are attributed to the structural ordering or alignment of Mn3+ ions and R3+ ions. The magnetocaloric effect of this sample is also studied from heat capacity measurements. A maximum magnetic entropy change (ΔS)M of ≈6.3 J kg−1 K−1 and adiabatic temperature change (ΔT)ad of 3–4 K is achieved in 0.1Ho‐doped compound for a magnetic field change of 5 T and useful for low‐temperature magnetic refrigeration applications. Dy0.9Ho0.1MnO3 prepared using solid‐state reaction route is found to exhibit the coexistence of magnetic and electric behavior at low temperature, particularly, antiferromagnetic and ferroelectric behavior at &lt;10, 18, and 40 K. Further, magnetocaloric properties viz. magnetic entropy change (ΔS)M of ≈6.3 J kg−1 K−1 and adiabatic temperature change (ΔT)ad of 3–4 K are measured under 5 T.</description><subject>Antiferromagnetism</subject><subject>Ferroelectricity</subject><subject>heat capacity</subject><subject>Holmium</subject><subject>Low temperature</subject><subject>low temperature magnetization</subject><subject>Magnetic fields</subject><subject>magnetocaloric effects</subject><subject>Manganese ions</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Multiferroic materials</subject><subject>multiferroics</subject><subject>Phase transitions</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Room temperature</subject><subject>Science &amp; Technology</subject><subject>Solid phases</subject><subject>Specific heat</subject><subject>Technology</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNUU1Lw0AQXUTBWr16DniU1NmvJnuU-FGhpYXW87JNdnVLm427CdJ_74aWnIWBmWHemwfvIXSPYYIByFMTgpoQIACAaX6BRjifknRKsbgcZoBrdBPCDoBxluEREptv7Q_uoL5q3doyWXnXaN9aHRJnkpcjTMTMRYFFvaTJotu31mjvnS3DLboyah_03bmP0efb66aYpfPl-0fxPE8bQmmeGsNEuSWK0GlFmBKZqKjAyuTbDHIhRCkYwZWmnFTAtDCUZbw_sIpXAgimY_Rw-tt499Pp0Mqd63wdJSVhDGKB4BH1eEL96q0zobS6LrVsvD0of5TREh5lOERw784Y5f9HF7ZVrXV14bq6jVRxptq9Pg4cDLIPQfYhyCEEuVqvn4eN_gHt73hI</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Naini, Pavan Kumar</creator><creator>Satapathy, Jyotirmayee</creator><creator>Abhinav, Etyala Meher</creator><creator>Srinivas, Adiraj</creator><creator>Raja, Muthuvel Manivel</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1040-8064</orcidid></search><sort><creationdate>202009</creationdate><title>Thermomagnetic Properties of Dy0.9Ho0.1MnO3 Multiferroics</title><author>Naini, Pavan Kumar ; Satapathy, Jyotirmayee ; Abhinav, Etyala Meher ; Srinivas, Adiraj ; Raja, Muthuvel Manivel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2338-ff49cb2a236d24a979d391af8b708999c9421de352d04e9f347508994d5d90213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiferromagnetism</topic><topic>Ferroelectricity</topic><topic>heat capacity</topic><topic>Holmium</topic><topic>Low temperature</topic><topic>low temperature magnetization</topic><topic>Magnetic fields</topic><topic>magnetocaloric effects</topic><topic>Manganese ions</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Multiferroic materials</topic><topic>multiferroics</topic><topic>Phase transitions</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Room temperature</topic><topic>Science &amp; Technology</topic><topic>Solid phases</topic><topic>Specific heat</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naini, Pavan Kumar</creatorcontrib><creatorcontrib>Satapathy, Jyotirmayee</creatorcontrib><creatorcontrib>Abhinav, Etyala Meher</creatorcontrib><creatorcontrib>Srinivas, Adiraj</creatorcontrib><creatorcontrib>Raja, Muthuvel Manivel</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naini, Pavan Kumar</au><au>Satapathy, Jyotirmayee</au><au>Abhinav, Etyala Meher</au><au>Srinivas, Adiraj</au><au>Raja, Muthuvel Manivel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermomagnetic Properties of Dy0.9Ho0.1MnO3 Multiferroics</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><stitle>PHYS STATUS SOLIDI A</stitle><date>2020-09</date><risdate>2020</risdate><volume>217</volume><issue>17</issue><epage>n/a</epage><artnum>2000138</artnum><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Holmium (Ho)‐doped DyMnO3 multiferroic compound is prepared using conventional solid‐state reaction route, and X‐ray powder diffraction analysis is conducted to confirm the single‐phase structure. Coexistence of magnetic and electric behavior in case of multiferroics is analyzed by heat capacity measurements from low temperature (2 K) to room temperature (300 K) under different magnetic fields. Herein, the existence antiferromagnetic and ferroelectric phase transitions in this compound at &lt;10, 18, and 40 K, respectively, is revealed, which are attributed to the structural ordering or alignment of Mn3+ ions and R3+ ions. The magnetocaloric effect of this sample is also studied from heat capacity measurements. A maximum magnetic entropy change (ΔS)M of ≈6.3 J kg−1 K−1 and adiabatic temperature change (ΔT)ad of 3–4 K is achieved in 0.1Ho‐doped compound for a magnetic field change of 5 T and useful for low‐temperature magnetic refrigeration applications. Dy0.9Ho0.1MnO3 prepared using solid‐state reaction route is found to exhibit the coexistence of magnetic and electric behavior at low temperature, particularly, antiferromagnetic and ferroelectric behavior at &lt;10, 18, and 40 K. Further, magnetocaloric properties viz. magnetic entropy change (ΔS)M of ≈6.3 J kg−1 K−1 and adiabatic temperature change (ΔT)ad of 3–4 K are measured under 5 T.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/pssa.202000138</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1040-8064</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2020-09, Vol.217 (17), p.n/a, Article 2000138
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2440440095
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Antiferromagnetism
Ferroelectricity
heat capacity
Holmium
Low temperature
low temperature magnetization
Magnetic fields
magnetocaloric effects
Manganese ions
Materials Science
Materials Science, Multidisciplinary
Multiferroic materials
multiferroics
Phase transitions
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Room temperature
Science & Technology
Solid phases
Specific heat
Technology
title Thermomagnetic Properties of Dy0.9Ho0.1MnO3 Multiferroics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T09%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermomagnetic%20Properties%20of%20Dy0.9Ho0.1MnO3%20Multiferroics&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Naini,%20Pavan%20Kumar&rft.date=2020-09&rft.volume=217&rft.issue=17&rft.epage=n/a&rft.artnum=2000138&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202000138&rft_dat=%3Cproquest_wiley%3E2440440095%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440440095&rft_id=info:pmid/&rfr_iscdi=true