STAP Optimization of Airborne Phased Array Radar in Nonuniform Environment Based on EFA Algorithm

EFA (extended factored approach) algorithm is the main method of space-time adaptive processing technology (STAP) for airborne phased array radar, but it is faced with many problems, such as large number of samples and large amount of calculation. Therefore, this paper uses a method of spatial data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-11
Hauptverfasser: Fang, Mengxu, Liu, Mingxin, Zheng, Xiaoxia, Tang, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2020
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Fang, Mengxu
Liu, Mingxin
Zheng, Xiaoxia
Tang, Bin
description EFA (extended factored approach) algorithm is the main method of space-time adaptive processing technology (STAP) for airborne phased array radar, but it is faced with many problems, such as large number of samples and large amount of calculation. Therefore, this paper uses a method of spatial data dimensionality reduction processing based on cyclic iterative calculation to optimize its STAP. The final experimental results show that, after spatial data dimensionality reduction processing optimization, the STAP performance of EFA algorithm is further expanded in the range of sample number adaptation; especially in the case of small sample number, the optimized STAP performance has been basically close to the ideal compared with other optimization schemes; tap performance also proves that the optimization scheme in this paper has better convergence speed and STAP performance.
doi_str_mv 10.1155/2020/3943041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440439903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440439903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-f10442b650148c202b6c908553b1fe75991e606d43a47c7d8803ea45d9e6f7473</originalsourceid><addsrcrecordid>eNqF0MFLwzAUBvAgCs7pzbMEPGpd0rw0zbGOTYXhhk7wVtI2cRlrMtNOmX-9nRM8enrv8ON7vA-hc0puKOV8EJOYDJgERoAeoB7lCYs4BXHY7SSGiMbs9RidNM2SkJhymvaQep5nMzxdt7a2X6q13mFvcGZD4YPTeLZQja5wFoLa4idVqYCtw4_ebZw1PtR45D5s8K7WrsW3P7ZLGI0znK3efLDtoj5FR0atGn32O_voZTyaD--jyfTuYZhNopJR0UaGEoC4SDihkJbdJ0VSSpJyzgpqtOBSUp2QpAKmQJSiSlPCtAJeSZ0YAYL10eU-dx38-0Y3bb70m-C6k3kMQIBJSVinrveqDL5pgjb5OthahW1OSb4rMd-VmP-W2PGrPV9YV6lP-5--2GvdGW3Un6YSRALsG1HueNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440439903</pqid></control><display><type>article</type><title>STAP Optimization of Airborne Phased Array Radar in Nonuniform Environment Based on EFA Algorithm</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Fang, Mengxu ; Liu, Mingxin ; Zheng, Xiaoxia ; Tang, Bin</creator><contributor>Lee, Sanghyuk ; Sanghyuk Lee</contributor><creatorcontrib>Fang, Mengxu ; Liu, Mingxin ; Zheng, Xiaoxia ; Tang, Bin ; Lee, Sanghyuk ; Sanghyuk Lee</creatorcontrib><description>EFA (extended factored approach) algorithm is the main method of space-time adaptive processing technology (STAP) for airborne phased array radar, but it is faced with many problems, such as large number of samples and large amount of calculation. Therefore, this paper uses a method of spatial data dimensionality reduction processing based on cyclic iterative calculation to optimize its STAP. The final experimental results show that, after spatial data dimensionality reduction processing optimization, the STAP performance of EFA algorithm is further expanded in the range of sample number adaptation; especially in the case of small sample number, the optimized STAP performance has been basically close to the ideal compared with other optimization schemes; tap performance also proves that the optimization scheme in this paper has better convergence speed and STAP performance.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/3943041</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Airborne radar ; Algorithms ; Antennas ; Binomial distribution ; Doppler effect ; Mathematical analysis ; Military technology ; Optimization ; Phased arrays ; Principal components analysis ; Radar arrays ; Radar systems ; Reduction ; Space-time adaptive processing ; Spacetime ; Spatial data ; Tornadoes</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-11</ispartof><rights>Copyright © 2020 Bin Tang et al.</rights><rights>Copyright © 2020 Bin Tang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-f10442b650148c202b6c908553b1fe75991e606d43a47c7d8803ea45d9e6f7473</cites><orcidid>0000-0003-1392-5216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Lee, Sanghyuk</contributor><contributor>Sanghyuk Lee</contributor><creatorcontrib>Fang, Mengxu</creatorcontrib><creatorcontrib>Liu, Mingxin</creatorcontrib><creatorcontrib>Zheng, Xiaoxia</creatorcontrib><creatorcontrib>Tang, Bin</creatorcontrib><title>STAP Optimization of Airborne Phased Array Radar in Nonuniform Environment Based on EFA Algorithm</title><title>Mathematical problems in engineering</title><description>EFA (extended factored approach) algorithm is the main method of space-time adaptive processing technology (STAP) for airborne phased array radar, but it is faced with many problems, such as large number of samples and large amount of calculation. Therefore, this paper uses a method of spatial data dimensionality reduction processing based on cyclic iterative calculation to optimize its STAP. The final experimental results show that, after spatial data dimensionality reduction processing optimization, the STAP performance of EFA algorithm is further expanded in the range of sample number adaptation; especially in the case of small sample number, the optimized STAP performance has been basically close to the ideal compared with other optimization schemes; tap performance also proves that the optimization scheme in this paper has better convergence speed and STAP performance.</description><subject>Airborne radar</subject><subject>Algorithms</subject><subject>Antennas</subject><subject>Binomial distribution</subject><subject>Doppler effect</subject><subject>Mathematical analysis</subject><subject>Military technology</subject><subject>Optimization</subject><subject>Phased arrays</subject><subject>Principal components analysis</subject><subject>Radar arrays</subject><subject>Radar systems</subject><subject>Reduction</subject><subject>Space-time adaptive processing</subject><subject>Spacetime</subject><subject>Spatial data</subject><subject>Tornadoes</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0MFLwzAUBvAgCs7pzbMEPGpd0rw0zbGOTYXhhk7wVtI2cRlrMtNOmX-9nRM8enrv8ON7vA-hc0puKOV8EJOYDJgERoAeoB7lCYs4BXHY7SSGiMbs9RidNM2SkJhymvaQep5nMzxdt7a2X6q13mFvcGZD4YPTeLZQja5wFoLa4idVqYCtw4_ebZw1PtR45D5s8K7WrsW3P7ZLGI0znK3efLDtoj5FR0atGn32O_voZTyaD--jyfTuYZhNopJR0UaGEoC4SDihkJbdJ0VSSpJyzgpqtOBSUp2QpAKmQJSiSlPCtAJeSZ0YAYL10eU-dx38-0Y3bb70m-C6k3kMQIBJSVinrveqDL5pgjb5OthahW1OSb4rMd-VmP-W2PGrPV9YV6lP-5--2GvdGW3Un6YSRALsG1HueNE</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Fang, Mengxu</creator><creator>Liu, Mingxin</creator><creator>Zheng, Xiaoxia</creator><creator>Tang, Bin</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1392-5216</orcidid></search><sort><creationdate>2020</creationdate><title>STAP Optimization of Airborne Phased Array Radar in Nonuniform Environment Based on EFA Algorithm</title><author>Fang, Mengxu ; Liu, Mingxin ; Zheng, Xiaoxia ; Tang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-f10442b650148c202b6c908553b1fe75991e606d43a47c7d8803ea45d9e6f7473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airborne radar</topic><topic>Algorithms</topic><topic>Antennas</topic><topic>Binomial distribution</topic><topic>Doppler effect</topic><topic>Mathematical analysis</topic><topic>Military technology</topic><topic>Optimization</topic><topic>Phased arrays</topic><topic>Principal components analysis</topic><topic>Radar arrays</topic><topic>Radar systems</topic><topic>Reduction</topic><topic>Space-time adaptive processing</topic><topic>Spacetime</topic><topic>Spatial data</topic><topic>Tornadoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Mengxu</creatorcontrib><creatorcontrib>Liu, Mingxin</creatorcontrib><creatorcontrib>Zheng, Xiaoxia</creatorcontrib><creatorcontrib>Tang, Bin</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Mengxu</au><au>Liu, Mingxin</au><au>Zheng, Xiaoxia</au><au>Tang, Bin</au><au>Lee, Sanghyuk</au><au>Sanghyuk Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STAP Optimization of Airborne Phased Array Radar in Nonuniform Environment Based on EFA Algorithm</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>EFA (extended factored approach) algorithm is the main method of space-time adaptive processing technology (STAP) for airborne phased array radar, but it is faced with many problems, such as large number of samples and large amount of calculation. Therefore, this paper uses a method of spatial data dimensionality reduction processing based on cyclic iterative calculation to optimize its STAP. The final experimental results show that, after spatial data dimensionality reduction processing optimization, the STAP performance of EFA algorithm is further expanded in the range of sample number adaptation; especially in the case of small sample number, the optimized STAP performance has been basically close to the ideal compared with other optimization schemes; tap performance also proves that the optimization scheme in this paper has better convergence speed and STAP performance.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/3943041</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1392-5216</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-11
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2440439903
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Airborne radar
Algorithms
Antennas
Binomial distribution
Doppler effect
Mathematical analysis
Military technology
Optimization
Phased arrays
Principal components analysis
Radar arrays
Radar systems
Reduction
Space-time adaptive processing
Spacetime
Spatial data
Tornadoes
title STAP Optimization of Airborne Phased Array Radar in Nonuniform Environment Based on EFA Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A11%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STAP%20Optimization%20of%20Airborne%20Phased%20Array%20Radar%20in%20Nonuniform%20Environment%20Based%20on%20EFA%20Algorithm&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Fang,%20Mengxu&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/3943041&rft_dat=%3Cproquest_cross%3E2440439903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440439903&rft_id=info:pmid/&rfr_iscdi=true