Temperature Distribution in Porous Fins, Subjected to Convection and Radiation, Obtained from the Minimization of a Convex Functional

This work proposes a convex functional endowed with a minimum, which occurs for the solution of the thermal radiation and natural convection heat transfer problem in a rectangular profile porous fin with a fluid flowing through it. The minimum principle ensures the (mathematically demonstrated) uniq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-10
Hauptverfasser: Saldanha da Gama, Rogério M., Moraes de Lira, Allan, Vendas Sarmento, Vinícius, Martins-Costa, Maria Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work proposes a convex functional endowed with a minimum, which occurs for the solution of the thermal radiation and natural convection heat transfer problem in a rectangular profile porous fin with a fluid flowing through it. The minimum principle ensures the (mathematically demonstrated) uniqueness of the solution and allows the problem simulation by employing a minimization procedure. Darcy’s law with the Oberbeck–Boussinesq approximation simplifies the momentum equation. The energy equation assumes thermal equilibrium between the porous matrix and fluid, allowing comparisons with previous authors’ models, which accounts for the effects of a porosity parameter, a radiation parameter, and a temperature ratio on the temperature. Results for very long fin and finite-length fin with insulated tip were successfully compared with previous works. Closed-form exact solutions for two limiting cases (no convection and no thermal radiation) are also presented.
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/8613717