Construction of Control with Constraints for Nonlinear Systems with Coefficients Depending on the Control Object State
We consider an optimal control problem on a finite time-interval for a three-sector economic control object. We reduce the economic system to an optimal control problem for a nonlinear system with coefficients independent of the control object state and find a nonlinear synthesizing control based on...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-10, Vol.250 (1), p.76-82 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82 |
---|---|
container_issue | 1 |
container_start_page | 76 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 250 |
creator | Murzabekov, Z. N. Mirzakhmedova, G. A. |
description | We consider an optimal control problem on a finite time-interval for a three-sector economic control object. We reduce the economic system to an optimal control problem for a nonlinear system with coefficients independent of the control object state and find a nonlinear synthesizing control based on the feedback principle and certain constraints on control. The results obtained for the nonlinear system are used to construct the control parameters in the mathematical model of a three-sector economic control object. We find an optimal distribution between the labor and investment resources satisfying the balance relations. Bibliography: 3 titles. Illustrations: 2 figures. |
doi_str_mv | 10.1007/s10958-020-04999-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2440296124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684933934</galeid><sourcerecordid>A684933934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4634-efc006b28745ca0e520706242cdb18676ece52974caf0a13cd64251f3b5552c83</originalsourceid><addsrcrecordid>eNqNkktvEzEURkcIJErhD7CyxIrFFL89s6zCo5UqKhFYW45zPXU0sYPtAP33OB2giRSVygu_zneuLN-meU3wGcFYvcsE96JrMcUt5n3ft_xJc0KEYm2nevG0rrGiLWOKP29e5LzCNSQ7dtL8mMWQS9ra4mNA0aG6LymO6KcvN2i6ND6UjFxM6HMMow9gEprf5gLr_BcD57z1sOPewwbC0ocBVWG5gX_G68UKbEHzYgq8bJ45M2Z49Wc-bb59_PB1dtFeXX-6nJ1ftZZLxltwFmO5oJ3iwhoMgmKFJeXULhekk0qCrWe94tY4bAizS8mpII4thBDUduy0eTN5Nyl-30IuehW3KdSSmnKOaS8J5ffUYEbQPrhYH23XPlt9rqiUmDHJHqRkx3vGerZztUeoAQIkM8YAztfjA-tj-H3_2RG-jiWsvT1a4FGB_QpvDwKVKfCrDGabs76cfzmU_4_d99KJtSnmnMDpTfJrk241wXrXxXrqYl27WN91sd6F2BTKFQ4DpPsPfCD1Gwwp7_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440296124</pqid></control><display><type>article</type><title>Construction of Control with Constraints for Nonlinear Systems with Coefficients Depending on the Control Object State</title><source>Springer Nature - Complete Springer Journals</source><creator>Murzabekov, Z. N. ; Mirzakhmedova, G. A.</creator><creatorcontrib>Murzabekov, Z. N. ; Mirzakhmedova, G. A.</creatorcontrib><description>We consider an optimal control problem on a finite time-interval for a three-sector economic control object. We reduce the economic system to an optimal control problem for a nonlinear system with coefficients independent of the control object state and find a nonlinear synthesizing control based on the feedback principle and certain constraints on control. The results obtained for the nonlinear system are used to construct the control parameters in the mathematical model of a three-sector economic control object. We find an optimal distribution between the labor and investment resources satisfying the balance relations. Bibliography: 3 titles. Illustrations: 2 figures.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-020-04999-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Control systems ; Differential equations ; Economic models ; Mathematics ; Mathematics and Statistics ; Nonlinear control ; Nonlinear systems ; Optimal control</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2020-10, Vol.250 (1), p.76-82</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4634-efc006b28745ca0e520706242cdb18676ece52974caf0a13cd64251f3b5552c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-020-04999-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-020-04999-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Murzabekov, Z. N.</creatorcontrib><creatorcontrib>Mirzakhmedova, G. A.</creatorcontrib><title>Construction of Control with Constraints for Nonlinear Systems with Coefficients Depending on the Control Object State</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider an optimal control problem on a finite time-interval for a three-sector economic control object. We reduce the economic system to an optimal control problem for a nonlinear system with coefficients independent of the control object state and find a nonlinear synthesizing control based on the feedback principle and certain constraints on control. The results obtained for the nonlinear system are used to construct the control parameters in the mathematical model of a three-sector economic control object. We find an optimal distribution between the labor and investment resources satisfying the balance relations. Bibliography: 3 titles. Illustrations: 2 figures.</description><subject>Analysis</subject><subject>Control systems</subject><subject>Differential equations</subject><subject>Economic models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkktvEzEURkcIJErhD7CyxIrFFL89s6zCo5UqKhFYW45zPXU0sYPtAP33OB2giRSVygu_zneuLN-meU3wGcFYvcsE96JrMcUt5n3ft_xJc0KEYm2nevG0rrGiLWOKP29e5LzCNSQ7dtL8mMWQS9ra4mNA0aG6LymO6KcvN2i6ND6UjFxM6HMMow9gEprf5gLr_BcD57z1sOPewwbC0ocBVWG5gX_G68UKbEHzYgq8bJ45M2Z49Wc-bb59_PB1dtFeXX-6nJ1ftZZLxltwFmO5oJ3iwhoMgmKFJeXULhekk0qCrWe94tY4bAizS8mpII4thBDUduy0eTN5Nyl-30IuehW3KdSSmnKOaS8J5ffUYEbQPrhYH23XPlt9rqiUmDHJHqRkx3vGerZztUeoAQIkM8YAztfjA-tj-H3_2RG-jiWsvT1a4FGB_QpvDwKVKfCrDGabs76cfzmU_4_d99KJtSnmnMDpTfJrk241wXrXxXrqYl27WN91sd6F2BTKFQ4DpPsPfCD1Gwwp7_E</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Murzabekov, Z. N.</creator><creator>Mirzakhmedova, G. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20201001</creationdate><title>Construction of Control with Constraints for Nonlinear Systems with Coefficients Depending on the Control Object State</title><author>Murzabekov, Z. N. ; Mirzakhmedova, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4634-efc006b28745ca0e520706242cdb18676ece52974caf0a13cd64251f3b5552c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Control systems</topic><topic>Differential equations</topic><topic>Economic models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murzabekov, Z. N.</creatorcontrib><creatorcontrib>Mirzakhmedova, G. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murzabekov, Z. N.</au><au>Mirzakhmedova, G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of Control with Constraints for Nonlinear Systems with Coefficients Depending on the Control Object State</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>250</volume><issue>1</issue><spage>76</spage><epage>82</epage><pages>76-82</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider an optimal control problem on a finite time-interval for a three-sector economic control object. We reduce the economic system to an optimal control problem for a nonlinear system with coefficients independent of the control object state and find a nonlinear synthesizing control based on the feedback principle and certain constraints on control. The results obtained for the nonlinear system are used to construct the control parameters in the mathematical model of a three-sector economic control object. We find an optimal distribution between the labor and investment resources satisfying the balance relations. Bibliography: 3 titles. Illustrations: 2 figures.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-020-04999-4</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2020-10, Vol.250 (1), p.76-82 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2440296124 |
source | Springer Nature - Complete Springer Journals |
subjects | Analysis Control systems Differential equations Economic models Mathematics Mathematics and Statistics Nonlinear control Nonlinear systems Optimal control |
title | Construction of Control with Constraints for Nonlinear Systems with Coefficients Depending on the Control Object State |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A57%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20Control%20with%20Constraints%20for%20Nonlinear%20Systems%20with%20Coefficients%20Depending%20on%20the%20Control%20Object%20State&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Murzabekov,%20Z.%20N.&rft.date=2020-10-01&rft.volume=250&rft.issue=1&rft.spage=76&rft.epage=82&rft.pages=76-82&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-020-04999-4&rft_dat=%3Cgale_proqu%3EA684933934%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440296124&rft_id=info:pmid/&rft_galeid=A684933934&rfr_iscdi=true |