Construction of Control with Constraints for Nonlinear Systems with Coefficients Depending on the Control Object State

We consider an optimal control problem on a finite time-interval for a three-sector economic control object. We reduce the economic system to an optimal control problem for a nonlinear system with coefficients independent of the control object state and find a nonlinear synthesizing control based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-10, Vol.250 (1), p.76-82
Hauptverfasser: Murzabekov, Z. N., Mirzakhmedova, G. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue 1
container_start_page 76
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 250
creator Murzabekov, Z. N.
Mirzakhmedova, G. A.
description We consider an optimal control problem on a finite time-interval for a three-sector economic control object. We reduce the economic system to an optimal control problem for a nonlinear system with coefficients independent of the control object state and find a nonlinear synthesizing control based on the feedback principle and certain constraints on control. The results obtained for the nonlinear system are used to construct the control parameters in the mathematical model of a three-sector economic control object. We find an optimal distribution between the labor and investment resources satisfying the balance relations. Bibliography: 3 titles. Illustrations: 2 figures.
doi_str_mv 10.1007/s10958-020-04999-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2440296124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684933934</galeid><sourcerecordid>A684933934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4634-efc006b28745ca0e520706242cdb18676ece52974caf0a13cd64251f3b5552c83</originalsourceid><addsrcrecordid>eNqNkktvEzEURkcIJErhD7CyxIrFFL89s6zCo5UqKhFYW45zPXU0sYPtAP33OB2giRSVygu_zneuLN-meU3wGcFYvcsE96JrMcUt5n3ft_xJc0KEYm2nevG0rrGiLWOKP29e5LzCNSQ7dtL8mMWQS9ra4mNA0aG6LymO6KcvN2i6ND6UjFxM6HMMow9gEprf5gLr_BcD57z1sOPewwbC0ocBVWG5gX_G68UKbEHzYgq8bJ45M2Z49Wc-bb59_PB1dtFeXX-6nJ1ftZZLxltwFmO5oJ3iwhoMgmKFJeXULhekk0qCrWe94tY4bAizS8mpII4thBDUduy0eTN5Nyl-30IuehW3KdSSmnKOaS8J5ffUYEbQPrhYH23XPlt9rqiUmDHJHqRkx3vGerZztUeoAQIkM8YAztfjA-tj-H3_2RG-jiWsvT1a4FGB_QpvDwKVKfCrDGabs76cfzmU_4_d99KJtSnmnMDpTfJrk241wXrXxXrqYl27WN91sd6F2BTKFQ4DpPsPfCD1Gwwp7_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440296124</pqid></control><display><type>article</type><title>Construction of Control with Constraints for Nonlinear Systems with Coefficients Depending on the Control Object State</title><source>Springer Nature - Complete Springer Journals</source><creator>Murzabekov, Z. N. ; Mirzakhmedova, G. A.</creator><creatorcontrib>Murzabekov, Z. N. ; Mirzakhmedova, G. A.</creatorcontrib><description>We consider an optimal control problem on a finite time-interval for a three-sector economic control object. We reduce the economic system to an optimal control problem for a nonlinear system with coefficients independent of the control object state and find a nonlinear synthesizing control based on the feedback principle and certain constraints on control. The results obtained for the nonlinear system are used to construct the control parameters in the mathematical model of a three-sector economic control object. We find an optimal distribution between the labor and investment resources satisfying the balance relations. Bibliography: 3 titles. Illustrations: 2 figures.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-020-04999-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Control systems ; Differential equations ; Economic models ; Mathematics ; Mathematics and Statistics ; Nonlinear control ; Nonlinear systems ; Optimal control</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2020-10, Vol.250 (1), p.76-82</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4634-efc006b28745ca0e520706242cdb18676ece52974caf0a13cd64251f3b5552c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-020-04999-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-020-04999-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Murzabekov, Z. N.</creatorcontrib><creatorcontrib>Mirzakhmedova, G. A.</creatorcontrib><title>Construction of Control with Constraints for Nonlinear Systems with Coefficients Depending on the Control Object State</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider an optimal control problem on a finite time-interval for a three-sector economic control object. We reduce the economic system to an optimal control problem for a nonlinear system with coefficients independent of the control object state and find a nonlinear synthesizing control based on the feedback principle and certain constraints on control. The results obtained for the nonlinear system are used to construct the control parameters in the mathematical model of a three-sector economic control object. We find an optimal distribution between the labor and investment resources satisfying the balance relations. Bibliography: 3 titles. Illustrations: 2 figures.</description><subject>Analysis</subject><subject>Control systems</subject><subject>Differential equations</subject><subject>Economic models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkktvEzEURkcIJErhD7CyxIrFFL89s6zCo5UqKhFYW45zPXU0sYPtAP33OB2giRSVygu_zneuLN-meU3wGcFYvcsE96JrMcUt5n3ft_xJc0KEYm2nevG0rrGiLWOKP29e5LzCNSQ7dtL8mMWQS9ra4mNA0aG6LymO6KcvN2i6ND6UjFxM6HMMow9gEprf5gLr_BcD57z1sOPewwbC0ocBVWG5gX_G68UKbEHzYgq8bJ45M2Z49Wc-bb59_PB1dtFeXX-6nJ1ftZZLxltwFmO5oJ3iwhoMgmKFJeXULhekk0qCrWe94tY4bAizS8mpII4thBDUduy0eTN5Nyl-30IuehW3KdSSmnKOaS8J5ffUYEbQPrhYH23XPlt9rqiUmDHJHqRkx3vGerZztUeoAQIkM8YAztfjA-tj-H3_2RG-jiWsvT1a4FGB_QpvDwKVKfCrDGabs76cfzmU_4_d99KJtSnmnMDpTfJrk241wXrXxXrqYl27WN91sd6F2BTKFQ4DpPsPfCD1Gwwp7_E</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Murzabekov, Z. N.</creator><creator>Mirzakhmedova, G. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20201001</creationdate><title>Construction of Control with Constraints for Nonlinear Systems with Coefficients Depending on the Control Object State</title><author>Murzabekov, Z. N. ; Mirzakhmedova, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4634-efc006b28745ca0e520706242cdb18676ece52974caf0a13cd64251f3b5552c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Control systems</topic><topic>Differential equations</topic><topic>Economic models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murzabekov, Z. N.</creatorcontrib><creatorcontrib>Mirzakhmedova, G. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murzabekov, Z. N.</au><au>Mirzakhmedova, G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of Control with Constraints for Nonlinear Systems with Coefficients Depending on the Control Object State</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>250</volume><issue>1</issue><spage>76</spage><epage>82</epage><pages>76-82</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider an optimal control problem on a finite time-interval for a three-sector economic control object. We reduce the economic system to an optimal control problem for a nonlinear system with coefficients independent of the control object state and find a nonlinear synthesizing control based on the feedback principle and certain constraints on control. The results obtained for the nonlinear system are used to construct the control parameters in the mathematical model of a three-sector economic control object. We find an optimal distribution between the labor and investment resources satisfying the balance relations. Bibliography: 3 titles. Illustrations: 2 figures.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-020-04999-4</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2020-10, Vol.250 (1), p.76-82
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2440296124
source Springer Nature - Complete Springer Journals
subjects Analysis
Control systems
Differential equations
Economic models
Mathematics
Mathematics and Statistics
Nonlinear control
Nonlinear systems
Optimal control
title Construction of Control with Constraints for Nonlinear Systems with Coefficients Depending on the Control Object State
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A57%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20Control%20with%20Constraints%20for%20Nonlinear%20Systems%20with%20Coefficients%20Depending%20on%20the%20Control%20Object%20State&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Murzabekov,%20Z.%20N.&rft.date=2020-10-01&rft.volume=250&rft.issue=1&rft.spage=76&rft.epage=82&rft.pages=76-82&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-020-04999-4&rft_dat=%3Cgale_proqu%3EA684933934%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440296124&rft_id=info:pmid/&rft_galeid=A684933934&rfr_iscdi=true