Optimal Structure of Recurrent Nonlinear Filters of Large Order for Diffusion Signals
We consider the optimal mean-square estimation problem for the state variables of a continuous nonlinear stochastic object by using results of time-discrete measurements. To obtain clock and inter-clock estimates on a computer of limited power in real time, we propose a procedure for the synthesis o...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-10, Vol.250 (1), p.134-143 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143 |
---|---|
container_issue | 1 |
container_start_page | 134 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 250 |
creator | Rudenko, E. A. |
description | We consider the optimal mean-square estimation problem for the state variables of a continuous nonlinear stochastic object by using results of time-discrete measurements. To obtain clock and inter-clock estimates on a computer of limited power in real time, we propose a procedure for the synthesis of a nonlinear structure of a discrete finitedimensional filter, the state vector of which is formed from the desired number of already obtained preceding clock estimates. We describe the synthesis algorithm for the filter and its suboptimal approximations. The advantage of the latter is shown in comparison with the corresponding generalizations of the Kalman filter. Bibliography: 8 titles. |
doi_str_mv | 10.1007/s10958-020-05005-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2440295979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684933940</galeid><sourcerecordid>A684933940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4637-5fd88bc1d972ba10cb6d6ccf64ca882d6d87631a6c902495054e3d955e8463863</originalsourceid><addsrcrecordid>eNqNkk9rFDEYhwdRsFa_gKcBTx6mZib_j6VaW1hc6NpzyGbeDCmzk_VNBvTbm3UL3YWllhwSkuf5JZBfVX1syUVLiPySWqK5akhHGsIJ4Y18VZ21XNJGSc1flzWRXUOpZG-rdyk9kCIJRc-q--U2h40d61XG2eUZoY6-vgM3I8KU6x9xGsMEFuvrMGbAtDteWBygXmIPWPuI9dfg_ZxCnOpVGCY7pvfVG18m-PA4n1f3199-Xt00i-X326vLReOYoLLhvldq7dpey25tW-LWohfOecGcVarrRa-koK0VTpOOaU44A9przkEVXwl6Xn3a524x_pohZfMQZ9y9wHSMkU5zLfUTNdgRTJh8zGjdJiRnLmUnBKFUPE8JxTSlmpFCNSeoASZAO8YJfCjbR6kv4Q_zL07wZfSwCe7kBS8SDm_4fCQUJsPvPNg5JXO7ujsO_x97mNvtWYcxJQRvtliahX9MS8yupGZfUlNKav6V1Mgi0b2UCjwNgE8f-Iz1F0Iq4yo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440295979</pqid></control><display><type>article</type><title>Optimal Structure of Recurrent Nonlinear Filters of Large Order for Diffusion Signals</title><source>SpringerLink Journals</source><creator>Rudenko, E. A.</creator><creatorcontrib>Rudenko, E. A.</creatorcontrib><description>We consider the optimal mean-square estimation problem for the state variables of a continuous nonlinear stochastic object by using results of time-discrete measurements. To obtain clock and inter-clock estimates on a computer of limited power in real time, we propose a procedure for the synthesis of a nonlinear structure of a discrete finitedimensional filter, the state vector of which is formed from the desired number of already obtained preceding clock estimates. We describe the synthesis algorithm for the filter and its suboptimal approximations. The advantage of the latter is shown in comparison with the corresponding generalizations of the Kalman filter. Bibliography: 8 titles.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-020-05005-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Continuity (mathematics) ; Kalman filters ; Mathematics ; Mathematics and Statistics ; Nonlinear filters ; State variable ; State vectors ; Synthesis</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2020-10, Vol.250 (1), p.134-143</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4637-5fd88bc1d972ba10cb6d6ccf64ca882d6d87631a6c902495054e3d955e8463863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-020-05005-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-020-05005-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rudenko, E. A.</creatorcontrib><title>Optimal Structure of Recurrent Nonlinear Filters of Large Order for Diffusion Signals</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider the optimal mean-square estimation problem for the state variables of a continuous nonlinear stochastic object by using results of time-discrete measurements. To obtain clock and inter-clock estimates on a computer of limited power in real time, we propose a procedure for the synthesis of a nonlinear structure of a discrete finitedimensional filter, the state vector of which is formed from the desired number of already obtained preceding clock estimates. We describe the synthesis algorithm for the filter and its suboptimal approximations. The advantage of the latter is shown in comparison with the corresponding generalizations of the Kalman filter. Bibliography: 8 titles.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Continuity (mathematics)</subject><subject>Kalman filters</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear filters</subject><subject>State variable</subject><subject>State vectors</subject><subject>Synthesis</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkk9rFDEYhwdRsFa_gKcBTx6mZib_j6VaW1hc6NpzyGbeDCmzk_VNBvTbm3UL3YWllhwSkuf5JZBfVX1syUVLiPySWqK5akhHGsIJ4Y18VZ21XNJGSc1flzWRXUOpZG-rdyk9kCIJRc-q--U2h40d61XG2eUZoY6-vgM3I8KU6x9xGsMEFuvrMGbAtDteWBygXmIPWPuI9dfg_ZxCnOpVGCY7pvfVG18m-PA4n1f3199-Xt00i-X326vLReOYoLLhvldq7dpey25tW-LWohfOecGcVarrRa-koK0VTpOOaU44A9przkEVXwl6Xn3a524x_pohZfMQZ9y9wHSMkU5zLfUTNdgRTJh8zGjdJiRnLmUnBKFUPE8JxTSlmpFCNSeoASZAO8YJfCjbR6kv4Q_zL07wZfSwCe7kBS8SDm_4fCQUJsPvPNg5JXO7ujsO_x97mNvtWYcxJQRvtliahX9MS8yupGZfUlNKav6V1Mgi0b2UCjwNgE8f-Iz1F0Iq4yo</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Rudenko, E. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20201001</creationdate><title>Optimal Structure of Recurrent Nonlinear Filters of Large Order for Diffusion Signals</title><author>Rudenko, E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4637-5fd88bc1d972ba10cb6d6ccf64ca882d6d87631a6c902495054e3d955e8463863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Continuity (mathematics)</topic><topic>Kalman filters</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear filters</topic><topic>State variable</topic><topic>State vectors</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rudenko, E. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rudenko, E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Structure of Recurrent Nonlinear Filters of Large Order for Diffusion Signals</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>250</volume><issue>1</issue><spage>134</spage><epage>143</epage><pages>134-143</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider the optimal mean-square estimation problem for the state variables of a continuous nonlinear stochastic object by using results of time-discrete measurements. To obtain clock and inter-clock estimates on a computer of limited power in real time, we propose a procedure for the synthesis of a nonlinear structure of a discrete finitedimensional filter, the state vector of which is formed from the desired number of already obtained preceding clock estimates. We describe the synthesis algorithm for the filter and its suboptimal approximations. The advantage of the latter is shown in comparison with the corresponding generalizations of the Kalman filter. Bibliography: 8 titles.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-020-05005-7</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2020-10, Vol.250 (1), p.134-143 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2440295979 |
source | SpringerLink Journals |
subjects | Algorithms Analysis Continuity (mathematics) Kalman filters Mathematics Mathematics and Statistics Nonlinear filters State variable State vectors Synthesis |
title | Optimal Structure of Recurrent Nonlinear Filters of Large Order for Diffusion Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Structure%20of%20Recurrent%20Nonlinear%20Filters%20of%20Large%20Order%20for%20Diffusion%20Signals&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Rudenko,%20E.%20A.&rft.date=2020-10-01&rft.volume=250&rft.issue=1&rft.spage=134&rft.epage=143&rft.pages=134-143&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-020-05005-7&rft_dat=%3Cgale_proqu%3EA684933940%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440295979&rft_id=info:pmid/&rft_galeid=A684933940&rfr_iscdi=true |