Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure
At present, solar energy is widely used as a kind of clean energy. The main solar radiation range under AM 1.5 is about 300 ~ 3000 nm. In this paper, we designed an efficient, ultra-broadband perfect solar absorber to have as long absorption bands in this range as possible to help alleviate the ener...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2020-07, Vol.211, p.110535, Article 110535 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110535 |
container_title | Solar energy materials and solar cells |
container_volume | 211 |
creator | Qin, Feng Chen, Xifang Yi, Zao Yao, Weitang Yang, Hua Tang, Yongjian Yi, Yong Li, Hailiang Yi, Yougen |
description | At present, solar energy is widely used as a kind of clean energy. The main solar radiation range under AM 1.5 is about 300 ~ 3000 nm. In this paper, we designed an efficient, ultra-broadband perfect solar absorber to have as long absorption bands in this range as possible to help alleviate the energy problem. The simulation calculations and experiments of the solar absorber show that the absorption bandwidth with absorption greater than 90% is greater than 2100 nm. It is worth noting that the perfect absorption bandwidth with absorption greater than 99% has more than 1600 nm. The absorption rate over the whole wavelength range (300 nm–3000 nm) (weighted directly around the sun by solar AM 1.5) is more than 90%. We can effectively control the absorption spectrum by adjusting the structural parameters. In addition, the proposed solar absorber is polarization independent, both the transverse electrical (TE) mode and the transverse magnetic (TM) mode, Absorption remains above 80% when the wide incidence angle is as high as 50°. Our propose design has high broadband absorption and great potential for solar thermal energy harvesting, thermoelectrics, and thermal emitters applications.
We propose an ultra-broadband perfect solar energy absorber based on TiN nanodisk and Ti thin film structure. We find that higher solar energy absorption efficiency can be achieved by adjusting the geometric parameters of nanostructures, and the perfect broadband absorption can be achieved in the range of visible light to near infrared. [Display omitted]
•The solar energy absorber has a perfect broadband absorption in the visible to near-infrared band.•The absorption properties can be changed by the geometric parameters.•The absorber is insensitive to incident angles, regardless of TM or TE polarization.•The absorber has good thermal stability by Ti film and TiN nanodisk. |
doi_str_mv | 10.1016/j.solmat.2020.110535 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440103767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024820301380</els_id><sourcerecordid>2440103767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-d401e43e56ce08584ece238da1dd446f4215e7097a8f3a03fa27b63cc9bc6c3a3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKvfwEPA89bJY18XQYovKHppzyGbzGrqdlOTrOK3d-t69jAMDP8H8yPkksGCASuut4vou51OCw58PDHIRX5EZqwq60yIujomM6h5mQGX1Sk5i3ELALwQckbaTZeCzprgtW10b-lhvpzFTPevHdI9hhZNomOBDlQ30YcGA210REt9T9fumfa699bF91_v2tH05nraum5HYwqDSUPAc3LS6i7ixd-ek8393Xr5mK1eHp6Wt6vMSICUWQkMpcC8MAhVXkk0yEVlNbNWyqKVnOVYQl3qqhUaRKt52RTCmLoxhRFazMnVlLsP_mPAmNTWD6EfKxWXYziIsihHlZxUJvgYA7ZqH9xOh2_FQB2Iqq2aiKoDUTURHW03kw3HDz4dBhWNw96gdWFkpKx3_wf8ACy7gV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440103767</pqid></control><display><type>article</type><title>Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure</title><source>Elsevier ScienceDirect Journals</source><creator>Qin, Feng ; Chen, Xifang ; Yi, Zao ; Yao, Weitang ; Yang, Hua ; Tang, Yongjian ; Yi, Yong ; Li, Hailiang ; Yi, Yougen</creator><creatorcontrib>Qin, Feng ; Chen, Xifang ; Yi, Zao ; Yao, Weitang ; Yang, Hua ; Tang, Yongjian ; Yi, Yong ; Li, Hailiang ; Yi, Yougen</creatorcontrib><description>At present, solar energy is widely used as a kind of clean energy. The main solar radiation range under AM 1.5 is about 300 ~ 3000 nm. In this paper, we designed an efficient, ultra-broadband perfect solar absorber to have as long absorption bands in this range as possible to help alleviate the energy problem. The simulation calculations and experiments of the solar absorber show that the absorption bandwidth with absorption greater than 90% is greater than 2100 nm. It is worth noting that the perfect absorption bandwidth with absorption greater than 99% has more than 1600 nm. The absorption rate over the whole wavelength range (300 nm–3000 nm) (weighted directly around the sun by solar AM 1.5) is more than 90%. We can effectively control the absorption spectrum by adjusting the structural parameters. In addition, the proposed solar absorber is polarization independent, both the transverse electrical (TE) mode and the transverse magnetic (TM) mode, Absorption remains above 80% when the wide incidence angle is as high as 50°. Our propose design has high broadband absorption and great potential for solar thermal energy harvesting, thermoelectrics, and thermal emitters applications.
We propose an ultra-broadband perfect solar energy absorber based on TiN nanodisk and Ti thin film structure. We find that higher solar energy absorption efficiency can be achieved by adjusting the geometric parameters of nanostructures, and the perfect broadband absorption can be achieved in the range of visible light to near infrared. [Display omitted]
•The solar energy absorber has a perfect broadband absorption in the visible to near-infrared band.•The absorption properties can be changed by the geometric parameters.•The absorber is insensitive to incident angles, regardless of TM or TE polarization.•The absorber has good thermal stability by Ti film and TiN nanodisk.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2020.110535</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorption ; Absorption spectra ; Broadband ; Clean energy ; Emitters ; Energy ; Energy harvesting ; Incidence angle ; Photovoltaic cells ; Plasmon resonance ; Solar energy ; Solar energy absorber ; Solar energy absorbers ; Solar heating ; Solar radiation ; Thermal energy ; Thin films ; TiN nanodisk ; Ultra-broadband perfect absorption</subject><ispartof>Solar energy materials and solar cells, 2020-07, Vol.211, p.110535, Article 110535</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-d401e43e56ce08584ece238da1dd446f4215e7097a8f3a03fa27b63cc9bc6c3a3</citedby><cites>FETCH-LOGICAL-c400t-d401e43e56ce08584ece238da1dd446f4215e7097a8f3a03fa27b63cc9bc6c3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024820301380$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Qin, Feng</creatorcontrib><creatorcontrib>Chen, Xifang</creatorcontrib><creatorcontrib>Yi, Zao</creatorcontrib><creatorcontrib>Yao, Weitang</creatorcontrib><creatorcontrib>Yang, Hua</creatorcontrib><creatorcontrib>Tang, Yongjian</creatorcontrib><creatorcontrib>Yi, Yong</creatorcontrib><creatorcontrib>Li, Hailiang</creatorcontrib><creatorcontrib>Yi, Yougen</creatorcontrib><title>Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure</title><title>Solar energy materials and solar cells</title><description>At present, solar energy is widely used as a kind of clean energy. The main solar radiation range under AM 1.5 is about 300 ~ 3000 nm. In this paper, we designed an efficient, ultra-broadband perfect solar absorber to have as long absorption bands in this range as possible to help alleviate the energy problem. The simulation calculations and experiments of the solar absorber show that the absorption bandwidth with absorption greater than 90% is greater than 2100 nm. It is worth noting that the perfect absorption bandwidth with absorption greater than 99% has more than 1600 nm. The absorption rate over the whole wavelength range (300 nm–3000 nm) (weighted directly around the sun by solar AM 1.5) is more than 90%. We can effectively control the absorption spectrum by adjusting the structural parameters. In addition, the proposed solar absorber is polarization independent, both the transverse electrical (TE) mode and the transverse magnetic (TM) mode, Absorption remains above 80% when the wide incidence angle is as high as 50°. Our propose design has high broadband absorption and great potential for solar thermal energy harvesting, thermoelectrics, and thermal emitters applications.
We propose an ultra-broadband perfect solar energy absorber based on TiN nanodisk and Ti thin film structure. We find that higher solar energy absorption efficiency can be achieved by adjusting the geometric parameters of nanostructures, and the perfect broadband absorption can be achieved in the range of visible light to near infrared. [Display omitted]
•The solar energy absorber has a perfect broadband absorption in the visible to near-infrared band.•The absorption properties can be changed by the geometric parameters.•The absorber is insensitive to incident angles, regardless of TM or TE polarization.•The absorber has good thermal stability by Ti film and TiN nanodisk.</description><subject>Absorption</subject><subject>Absorption spectra</subject><subject>Broadband</subject><subject>Clean energy</subject><subject>Emitters</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Incidence angle</subject><subject>Photovoltaic cells</subject><subject>Plasmon resonance</subject><subject>Solar energy</subject><subject>Solar energy absorber</subject><subject>Solar energy absorbers</subject><subject>Solar heating</subject><subject>Solar radiation</subject><subject>Thermal energy</subject><subject>Thin films</subject><subject>TiN nanodisk</subject><subject>Ultra-broadband perfect absorption</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKvfwEPA89bJY18XQYovKHppzyGbzGrqdlOTrOK3d-t69jAMDP8H8yPkksGCASuut4vou51OCw58PDHIRX5EZqwq60yIujomM6h5mQGX1Sk5i3ELALwQckbaTZeCzprgtW10b-lhvpzFTPevHdI9hhZNomOBDlQ30YcGA210REt9T9fumfa699bF91_v2tH05nraum5HYwqDSUPAc3LS6i7ixd-ek8393Xr5mK1eHp6Wt6vMSICUWQkMpcC8MAhVXkk0yEVlNbNWyqKVnOVYQl3qqhUaRKt52RTCmLoxhRFazMnVlLsP_mPAmNTWD6EfKxWXYziIsihHlZxUJvgYA7ZqH9xOh2_FQB2Iqq2aiKoDUTURHW03kw3HDz4dBhWNw96gdWFkpKx3_wf8ACy7gV4</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Qin, Feng</creator><creator>Chen, Xifang</creator><creator>Yi, Zao</creator><creator>Yao, Weitang</creator><creator>Yang, Hua</creator><creator>Tang, Yongjian</creator><creator>Yi, Yong</creator><creator>Li, Hailiang</creator><creator>Yi, Yougen</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200701</creationdate><title>Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure</title><author>Qin, Feng ; Chen, Xifang ; Yi, Zao ; Yao, Weitang ; Yang, Hua ; Tang, Yongjian ; Yi, Yong ; Li, Hailiang ; Yi, Yougen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-d401e43e56ce08584ece238da1dd446f4215e7097a8f3a03fa27b63cc9bc6c3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Absorption spectra</topic><topic>Broadband</topic><topic>Clean energy</topic><topic>Emitters</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Incidence angle</topic><topic>Photovoltaic cells</topic><topic>Plasmon resonance</topic><topic>Solar energy</topic><topic>Solar energy absorber</topic><topic>Solar energy absorbers</topic><topic>Solar heating</topic><topic>Solar radiation</topic><topic>Thermal energy</topic><topic>Thin films</topic><topic>TiN nanodisk</topic><topic>Ultra-broadband perfect absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Feng</creatorcontrib><creatorcontrib>Chen, Xifang</creatorcontrib><creatorcontrib>Yi, Zao</creatorcontrib><creatorcontrib>Yao, Weitang</creatorcontrib><creatorcontrib>Yang, Hua</creatorcontrib><creatorcontrib>Tang, Yongjian</creatorcontrib><creatorcontrib>Yi, Yong</creatorcontrib><creatorcontrib>Li, Hailiang</creatorcontrib><creatorcontrib>Yi, Yougen</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Feng</au><au>Chen, Xifang</au><au>Yi, Zao</au><au>Yao, Weitang</au><au>Yang, Hua</au><au>Tang, Yongjian</au><au>Yi, Yong</au><au>Li, Hailiang</au><au>Yi, Yougen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>211</volume><spage>110535</spage><pages>110535-</pages><artnum>110535</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>At present, solar energy is widely used as a kind of clean energy. The main solar radiation range under AM 1.5 is about 300 ~ 3000 nm. In this paper, we designed an efficient, ultra-broadband perfect solar absorber to have as long absorption bands in this range as possible to help alleviate the energy problem. The simulation calculations and experiments of the solar absorber show that the absorption bandwidth with absorption greater than 90% is greater than 2100 nm. It is worth noting that the perfect absorption bandwidth with absorption greater than 99% has more than 1600 nm. The absorption rate over the whole wavelength range (300 nm–3000 nm) (weighted directly around the sun by solar AM 1.5) is more than 90%. We can effectively control the absorption spectrum by adjusting the structural parameters. In addition, the proposed solar absorber is polarization independent, both the transverse electrical (TE) mode and the transverse magnetic (TM) mode, Absorption remains above 80% when the wide incidence angle is as high as 50°. Our propose design has high broadband absorption and great potential for solar thermal energy harvesting, thermoelectrics, and thermal emitters applications.
We propose an ultra-broadband perfect solar energy absorber based on TiN nanodisk and Ti thin film structure. We find that higher solar energy absorption efficiency can be achieved by adjusting the geometric parameters of nanostructures, and the perfect broadband absorption can be achieved in the range of visible light to near infrared. [Display omitted]
•The solar energy absorber has a perfect broadband absorption in the visible to near-infrared band.•The absorption properties can be changed by the geometric parameters.•The absorber is insensitive to incident angles, regardless of TM or TE polarization.•The absorber has good thermal stability by Ti film and TiN nanodisk.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2020.110535</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2020-07, Vol.211, p.110535, Article 110535 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_2440103767 |
source | Elsevier ScienceDirect Journals |
subjects | Absorption Absorption spectra Broadband Clean energy Emitters Energy Energy harvesting Incidence angle Photovoltaic cells Plasmon resonance Solar energy Solar energy absorber Solar energy absorbers Solar heating Solar radiation Thermal energy Thin films TiN nanodisk Ultra-broadband perfect absorption |
title | Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-broadband%20and%20wide-angle%20perfect%20solar%20absorber%20based%20on%20TiN%20nanodisk%20and%20Ti%20thin%20film%20structure&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Qin,%20Feng&rft.date=2020-07-01&rft.volume=211&rft.spage=110535&rft.pages=110535-&rft.artnum=110535&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2020.110535&rft_dat=%3Cproquest_cross%3E2440103767%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440103767&rft_id=info:pmid/&rft_els_id=S0927024820301380&rfr_iscdi=true |