Commutative and associative properties of the Caputo fractional derivative and its generalizing convolution operator

•Caputo fractional derivative of analytic functions (not necessarily of exponential order).•Commutative and semigroup properties of Caputo derivative, under less restrictive requirements.•Properties of Caputo-type convolution operator defined by Bernstein functions. While for the integer-order deriv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2020-10, Vol.89, p.105338, Article 105338
Hauptverfasser: Beghin, Luisa, Caputo, Michele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105338
container_title Communications in nonlinear science & numerical simulation
container_volume 89
creator Beghin, Luisa
Caputo, Michele
description •Caputo fractional derivative of analytic functions (not necessarily of exponential order).•Commutative and semigroup properties of Caputo derivative, under less restrictive requirements.•Properties of Caputo-type convolution operator defined by Bernstein functions. While for the integer-order derivatives, the commutative and semigroup (or associative) properties hold, the same is not true, in general, for the fractional derivatives. We show that, when the function is analytic, the Caputo derivative enjoys the above mentioned properties, at least when the fractional indices are smaller than one. This result is proved under assumptions on the derivatives (evaluated in zero) that are much less restrictive than the usual requirement of vanishing in the origin. Finally, we study the same properties for a generalization of the above fractional derivative, i.e. the Caputo-type convolution operator defined in [12] and [25]. In this more general setting (which includes the fractional, as particular case), we prove that the commutative property holds, while the associative property must be formulated accordingly.
doi_str_mv 10.1016/j.cnsns.2020.105338
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440102944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570420301702</els_id><sourcerecordid>2440102944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-993ff3ad1331cde68e15ed8aa2a17c223a0885a356a7798be4fb912e98e18e9e3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYsoOD5-gZuA6455tNN04UKKLxhwo-twJ70dUzpNTdKC_npTK7hzdR-c73LPSZIrRteMss1Nu9a97_2aUz5vciHkUbJispBpwYvsOPaUFmle0Ow0OfO-pZEq82yVhMoeDmOAYCYk0NcEvLfaLPPg7IAuGPTENiS8I6lgGIMljQMdjO2hIzU6M_3hJniyxx4ddObL9HuibT_ZbpzVZL4GwbqL5KSBzuPlbz1P3h7uX6undPvy-FzdbVMtBAtpWYqmEVCzOOkaNxJZjrUE4MAKzbkAKmUOIt9AUZRyh1mzKxnHMgollijOk-vlbjTyMaIPqrWji197xbOMMsrLLIsqsai0s947bNTgzAHcp2JUzfGqVv3Eq-Z41RJvpG4XCqOByaBTXhvsNdbGoQ6qtuZf_htd0od6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440102944</pqid></control><display><type>article</type><title>Commutative and associative properties of the Caputo fractional derivative and its generalizing convolution operator</title><source>Access via ScienceDirect (Elsevier)</source><creator>Beghin, Luisa ; Caputo, Michele</creator><creatorcontrib>Beghin, Luisa ; Caputo, Michele</creatorcontrib><description>•Caputo fractional derivative of analytic functions (not necessarily of exponential order).•Commutative and semigroup properties of Caputo derivative, under less restrictive requirements.•Properties of Caputo-type convolution operator defined by Bernstein functions. While for the integer-order derivatives, the commutative and semigroup (or associative) properties hold, the same is not true, in general, for the fractional derivatives. We show that, when the function is analytic, the Caputo derivative enjoys the above mentioned properties, at least when the fractional indices are smaller than one. This result is proved under assumptions on the derivatives (evaluated in zero) that are much less restrictive than the usual requirement of vanishing in the origin. Finally, we study the same properties for a generalization of the above fractional derivative, i.e. the Caputo-type convolution operator defined in [12] and [25]. In this more general setting (which includes the fractional, as particular case), we prove that the commutative property holds, while the associative property must be formulated accordingly.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2020.105338</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Associativity ; Caputo fractional derivative ; Caputo-type convolution operator ; Commutative property ; Commutativity ; Convolution ; Derivatives ; Fractions ; Integer programming ; Mathematical analysis ; Mathematical models ; Nonlinear equations ; Operators (mathematics) ; Semigroup property</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2020-10, Vol.89, p.105338, Article 105338</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Oct 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-993ff3ad1331cde68e15ed8aa2a17c223a0885a356a7798be4fb912e98e18e9e3</citedby><cites>FETCH-LOGICAL-c331t-993ff3ad1331cde68e15ed8aa2a17c223a0885a356a7798be4fb912e98e18e9e3</cites><orcidid>0000-0002-1252-4173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2020.105338$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Beghin, Luisa</creatorcontrib><creatorcontrib>Caputo, Michele</creatorcontrib><title>Commutative and associative properties of the Caputo fractional derivative and its generalizing convolution operator</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•Caputo fractional derivative of analytic functions (not necessarily of exponential order).•Commutative and semigroup properties of Caputo derivative, under less restrictive requirements.•Properties of Caputo-type convolution operator defined by Bernstein functions. While for the integer-order derivatives, the commutative and semigroup (or associative) properties hold, the same is not true, in general, for the fractional derivatives. We show that, when the function is analytic, the Caputo derivative enjoys the above mentioned properties, at least when the fractional indices are smaller than one. This result is proved under assumptions on the derivatives (evaluated in zero) that are much less restrictive than the usual requirement of vanishing in the origin. Finally, we study the same properties for a generalization of the above fractional derivative, i.e. the Caputo-type convolution operator defined in [12] and [25]. In this more general setting (which includes the fractional, as particular case), we prove that the commutative property holds, while the associative property must be formulated accordingly.</description><subject>Associativity</subject><subject>Caputo fractional derivative</subject><subject>Caputo-type convolution operator</subject><subject>Commutative property</subject><subject>Commutativity</subject><subject>Convolution</subject><subject>Derivatives</subject><subject>Fractions</subject><subject>Integer programming</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear equations</subject><subject>Operators (mathematics)</subject><subject>Semigroup property</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYsoOD5-gZuA6455tNN04UKKLxhwo-twJ70dUzpNTdKC_npTK7hzdR-c73LPSZIrRteMss1Nu9a97_2aUz5vciHkUbJispBpwYvsOPaUFmle0Ow0OfO-pZEq82yVhMoeDmOAYCYk0NcEvLfaLPPg7IAuGPTENiS8I6lgGIMljQMdjO2hIzU6M_3hJniyxx4ddObL9HuibT_ZbpzVZL4GwbqL5KSBzuPlbz1P3h7uX6undPvy-FzdbVMtBAtpWYqmEVCzOOkaNxJZjrUE4MAKzbkAKmUOIt9AUZRyh1mzKxnHMgollijOk-vlbjTyMaIPqrWji197xbOMMsrLLIsqsai0s947bNTgzAHcp2JUzfGqVv3Eq-Z41RJvpG4XCqOByaBTXhvsNdbGoQ6qtuZf_htd0od6</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Beghin, Luisa</creator><creator>Caputo, Michele</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1252-4173</orcidid></search><sort><creationdate>202010</creationdate><title>Commutative and associative properties of the Caputo fractional derivative and its generalizing convolution operator</title><author>Beghin, Luisa ; Caputo, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-993ff3ad1331cde68e15ed8aa2a17c223a0885a356a7798be4fb912e98e18e9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Associativity</topic><topic>Caputo fractional derivative</topic><topic>Caputo-type convolution operator</topic><topic>Commutative property</topic><topic>Commutativity</topic><topic>Convolution</topic><topic>Derivatives</topic><topic>Fractions</topic><topic>Integer programming</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear equations</topic><topic>Operators (mathematics)</topic><topic>Semigroup property</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beghin, Luisa</creatorcontrib><creatorcontrib>Caputo, Michele</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beghin, Luisa</au><au>Caputo, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commutative and associative properties of the Caputo fractional derivative and its generalizing convolution operator</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2020-10</date><risdate>2020</risdate><volume>89</volume><spage>105338</spage><pages>105338-</pages><artnum>105338</artnum><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•Caputo fractional derivative of analytic functions (not necessarily of exponential order).•Commutative and semigroup properties of Caputo derivative, under less restrictive requirements.•Properties of Caputo-type convolution operator defined by Bernstein functions. While for the integer-order derivatives, the commutative and semigroup (or associative) properties hold, the same is not true, in general, for the fractional derivatives. We show that, when the function is analytic, the Caputo derivative enjoys the above mentioned properties, at least when the fractional indices are smaller than one. This result is proved under assumptions on the derivatives (evaluated in zero) that are much less restrictive than the usual requirement of vanishing in the origin. Finally, we study the same properties for a generalization of the above fractional derivative, i.e. the Caputo-type convolution operator defined in [12] and [25]. In this more general setting (which includes the fractional, as particular case), we prove that the commutative property holds, while the associative property must be formulated accordingly.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2020.105338</doi><orcidid>https://orcid.org/0000-0002-1252-4173</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2020-10, Vol.89, p.105338, Article 105338
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2440102944
source Access via ScienceDirect (Elsevier)
subjects Associativity
Caputo fractional derivative
Caputo-type convolution operator
Commutative property
Commutativity
Convolution
Derivatives
Fractions
Integer programming
Mathematical analysis
Mathematical models
Nonlinear equations
Operators (mathematics)
Semigroup property
title Commutative and associative properties of the Caputo fractional derivative and its generalizing convolution operator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commutative%20and%20associative%20properties%20of%20the%20Caputo%20fractional%20derivative%20and%20its%20generalizing%20convolution%20operator&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Beghin,%20Luisa&rft.date=2020-10&rft.volume=89&rft.spage=105338&rft.pages=105338-&rft.artnum=105338&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2020.105338&rft_dat=%3Cproquest_cross%3E2440102944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440102944&rft_id=info:pmid/&rft_els_id=S1007570420301702&rfr_iscdi=true