Band engineering of Dirac cones in iron chalcogenides

By band engineering the iron chalcogenide Fe(Se,Te) via ab initio calculations, we search for topological surface states and realizations of Majorana bound states. Proposed topological states are expected to occur for nonstoichiometric compositions on a surface Dirac cone where issues like disorder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-08, Vol.102 (5), p.1, Article 054209
Hauptverfasser: Lauke, Lars, Heid, Rolf, Merz, Michael, Wolf, Thomas, Haghighirad, Amir-Abbas, Schmalian, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1
container_title Physical review. B
container_volume 102
creator Lauke, Lars
Heid, Rolf
Merz, Michael
Wolf, Thomas
Haghighirad, Amir-Abbas
Schmalian, Jörg
description By band engineering the iron chalcogenide Fe(Se,Te) via ab initio calculations, we search for topological surface states and realizations of Majorana bound states. Proposed topological states are expected to occur for nonstoichiometric compositions on a surface Dirac cone where issues like disorder scattering and charge transfer between relevant electronic states have to be addressed. However, this surface Dirac cone is well above the Fermi level. Our goal is to theoretically design a substituted crystal in which the surface Dirac cone is shifted toward the Fermi level by modifying the bulk material without disturbing the surface. Going beyond conventional density functional theory, we apply the Blackman, Esterling, and Berk coherent potential approximation in a mixed basis pseudopotential framework to scan the substitutional phase space of cosubstitutions on the Se sites. We have identified iodine as a promising candidate for intrinsic doping. Our specific proposal is that FeSe0.325I0.175Te0.5 is a very likely candidate to exhibit a Dirac cone right at the Fermi energy without inducing strong disorder scattering.
doi_str_mv 10.1103/PhysRevB.102.054209
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440098214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440098214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-a44adf441712aa35fb008fba9efb9f97cc480357f21c6d863c37815fb16f5fd33</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWGp_gZuA66k3j0kmS1ufUFBE1yGTSaYpNalJK_TfOzLq6h4uH-fAh9AlgTkhwK5f1sfy6r4WcwJ0DjWnoE7QhHKhKqWEOv3PNZyjWSkbACAClAQ1QfXCxA672IfoXA6xx8nj25CNxTZFV3CIOOQUsV2brU29i6Fz5QKdebMtbvZ7p-j9_u5t-Vitnh-eljerylIp95Xh3HSecyIJNYbVvgVofGuU863ySlrLG2C19JRY0TWCWSYbMmBE-Np3jE3R1di7y-nz4Mpeb9Ihx2FSU84BVEMJHyg2UjanUrLzepfDh8lHTUD_KNJ_ioYH1aMi9g35V1pC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440098214</pqid></control><display><type>article</type><title>Band engineering of Dirac cones in iron chalcogenides</title><source>American Physical Society Journals</source><creator>Lauke, Lars ; Heid, Rolf ; Merz, Michael ; Wolf, Thomas ; Haghighirad, Amir-Abbas ; Schmalian, Jörg</creator><creatorcontrib>Lauke, Lars ; Heid, Rolf ; Merz, Michael ; Wolf, Thomas ; Haghighirad, Amir-Abbas ; Schmalian, Jörg</creatorcontrib><description>By band engineering the iron chalcogenide Fe(Se,Te) via ab initio calculations, we search for topological surface states and realizations of Majorana bound states. Proposed topological states are expected to occur for nonstoichiometric compositions on a surface Dirac cone where issues like disorder scattering and charge transfer between relevant electronic states have to be addressed. However, this surface Dirac cone is well above the Fermi level. Our goal is to theoretically design a substituted crystal in which the surface Dirac cone is shifted toward the Fermi level by modifying the bulk material without disturbing the surface. Going beyond conventional density functional theory, we apply the Blackman, Esterling, and Berk coherent potential approximation in a mixed basis pseudopotential framework to scan the substitutional phase space of cosubstitutions on the Se sites. We have identified iodine as a promising candidate for intrinsic doping. Our specific proposal is that FeSe0.325I0.175Te0.5 is a very likely candidate to exhibit a Dirac cone right at the Fermi energy without inducing strong disorder scattering.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.054209</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Bulk density ; Chalcogenides ; Charge transfer ; Coherent potential approximation ; Cones ; Density functional theory ; Electron states ; Fermi level ; Iodine ; Iron ; Scattering ; Topology</subject><ispartof>Physical review. B, 2020-08, Vol.102 (5), p.1, Article 054209</ispartof><rights>Copyright American Physical Society Aug 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-a44adf441712aa35fb008fba9efb9f97cc480357f21c6d863c37815fb16f5fd33</citedby><cites>FETCH-LOGICAL-c277t-a44adf441712aa35fb008fba9efb9f97cc480357f21c6d863c37815fb16f5fd33</cites><orcidid>0000-0002-7346-7176 ; 0000-0002-2144-1417 ; 0000-0003-4723-4966 ; 0000-0001-6350-516X ; 0000-0003-4142-2448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids></links><search><creatorcontrib>Lauke, Lars</creatorcontrib><creatorcontrib>Heid, Rolf</creatorcontrib><creatorcontrib>Merz, Michael</creatorcontrib><creatorcontrib>Wolf, Thomas</creatorcontrib><creatorcontrib>Haghighirad, Amir-Abbas</creatorcontrib><creatorcontrib>Schmalian, Jörg</creatorcontrib><title>Band engineering of Dirac cones in iron chalcogenides</title><title>Physical review. B</title><description>By band engineering the iron chalcogenide Fe(Se,Te) via ab initio calculations, we search for topological surface states and realizations of Majorana bound states. Proposed topological states are expected to occur for nonstoichiometric compositions on a surface Dirac cone where issues like disorder scattering and charge transfer between relevant electronic states have to be addressed. However, this surface Dirac cone is well above the Fermi level. Our goal is to theoretically design a substituted crystal in which the surface Dirac cone is shifted toward the Fermi level by modifying the bulk material without disturbing the surface. Going beyond conventional density functional theory, we apply the Blackman, Esterling, and Berk coherent potential approximation in a mixed basis pseudopotential framework to scan the substitutional phase space of cosubstitutions on the Se sites. We have identified iodine as a promising candidate for intrinsic doping. Our specific proposal is that FeSe0.325I0.175Te0.5 is a very likely candidate to exhibit a Dirac cone right at the Fermi energy without inducing strong disorder scattering.</description><subject>Bulk density</subject><subject>Chalcogenides</subject><subject>Charge transfer</subject><subject>Coherent potential approximation</subject><subject>Cones</subject><subject>Density functional theory</subject><subject>Electron states</subject><subject>Fermi level</subject><subject>Iodine</subject><subject>Iron</subject><subject>Scattering</subject><subject>Topology</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWGp_gZuA66k3j0kmS1ufUFBE1yGTSaYpNalJK_TfOzLq6h4uH-fAh9AlgTkhwK5f1sfy6r4WcwJ0DjWnoE7QhHKhKqWEOv3PNZyjWSkbACAClAQ1QfXCxA672IfoXA6xx8nj25CNxTZFV3CIOOQUsV2brU29i6Fz5QKdebMtbvZ7p-j9_u5t-Vitnh-eljerylIp95Xh3HSecyIJNYbVvgVofGuU863ySlrLG2C19JRY0TWCWSYbMmBE-Np3jE3R1di7y-nz4Mpeb9Ihx2FSU84BVEMJHyg2UjanUrLzepfDh8lHTUD_KNJ_ioYH1aMi9g35V1pC</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Lauke, Lars</creator><creator>Heid, Rolf</creator><creator>Merz, Michael</creator><creator>Wolf, Thomas</creator><creator>Haghighirad, Amir-Abbas</creator><creator>Schmalian, Jörg</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7346-7176</orcidid><orcidid>https://orcid.org/0000-0002-2144-1417</orcidid><orcidid>https://orcid.org/0000-0003-4723-4966</orcidid><orcidid>https://orcid.org/0000-0001-6350-516X</orcidid><orcidid>https://orcid.org/0000-0003-4142-2448</orcidid></search><sort><creationdate>20200801</creationdate><title>Band engineering of Dirac cones in iron chalcogenides</title><author>Lauke, Lars ; Heid, Rolf ; Merz, Michael ; Wolf, Thomas ; Haghighirad, Amir-Abbas ; Schmalian, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-a44adf441712aa35fb008fba9efb9f97cc480357f21c6d863c37815fb16f5fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bulk density</topic><topic>Chalcogenides</topic><topic>Charge transfer</topic><topic>Coherent potential approximation</topic><topic>Cones</topic><topic>Density functional theory</topic><topic>Electron states</topic><topic>Fermi level</topic><topic>Iodine</topic><topic>Iron</topic><topic>Scattering</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauke, Lars</creatorcontrib><creatorcontrib>Heid, Rolf</creatorcontrib><creatorcontrib>Merz, Michael</creatorcontrib><creatorcontrib>Wolf, Thomas</creatorcontrib><creatorcontrib>Haghighirad, Amir-Abbas</creatorcontrib><creatorcontrib>Schmalian, Jörg</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauke, Lars</au><au>Heid, Rolf</au><au>Merz, Michael</au><au>Wolf, Thomas</au><au>Haghighirad, Amir-Abbas</au><au>Schmalian, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band engineering of Dirac cones in iron chalcogenides</atitle><jtitle>Physical review. B</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>102</volume><issue>5</issue><spage>1</spage><pages>1-</pages><artnum>054209</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>By band engineering the iron chalcogenide Fe(Se,Te) via ab initio calculations, we search for topological surface states and realizations of Majorana bound states. Proposed topological states are expected to occur for nonstoichiometric compositions on a surface Dirac cone where issues like disorder scattering and charge transfer between relevant electronic states have to be addressed. However, this surface Dirac cone is well above the Fermi level. Our goal is to theoretically design a substituted crystal in which the surface Dirac cone is shifted toward the Fermi level by modifying the bulk material without disturbing the surface. Going beyond conventional density functional theory, we apply the Blackman, Esterling, and Berk coherent potential approximation in a mixed basis pseudopotential framework to scan the substitutional phase space of cosubstitutions on the Se sites. We have identified iodine as a promising candidate for intrinsic doping. Our specific proposal is that FeSe0.325I0.175Te0.5 is a very likely candidate to exhibit a Dirac cone right at the Fermi energy without inducing strong disorder scattering.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.102.054209</doi><orcidid>https://orcid.org/0000-0002-7346-7176</orcidid><orcidid>https://orcid.org/0000-0002-2144-1417</orcidid><orcidid>https://orcid.org/0000-0003-4723-4966</orcidid><orcidid>https://orcid.org/0000-0001-6350-516X</orcidid><orcidid>https://orcid.org/0000-0003-4142-2448</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-08, Vol.102 (5), p.1, Article 054209
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2440098214
source American Physical Society Journals
subjects Bulk density
Chalcogenides
Charge transfer
Coherent potential approximation
Cones
Density functional theory
Electron states
Fermi level
Iodine
Iron
Scattering
Topology
title Band engineering of Dirac cones in iron chalcogenides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band%20engineering%20of%20Dirac%20cones%20in%20iron%20chalcogenides&rft.jtitle=Physical%20review.%20B&rft.au=Lauke,%20Lars&rft.date=2020-08-01&rft.volume=102&rft.issue=5&rft.spage=1&rft.pages=1-&rft.artnum=054209&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.054209&rft_dat=%3Cproquest_cross%3E2440098214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440098214&rft_id=info:pmid/&rfr_iscdi=true