Boundedness of hyperbolic components of Newton maps

We investigate boundedness of hyperbolic components in the moduli space of Newton maps. For quartic maps, (i) we prove hyperbolic components possessing two distinct attracting cycles each of period at least two are bounded, and (ii) we characterize the possible points on the boundary at infinity for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2020-07, Vol.238 (2), p.837-869
Hauptverfasser: Nie, Hongming, Pilgrim, Kevin M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 869
container_issue 2
container_start_page 837
container_title Israel journal of mathematics
container_volume 238
creator Nie, Hongming
Pilgrim, Kevin M.
description We investigate boundedness of hyperbolic components in the moduli space of Newton maps. For quartic maps, (i) we prove hyperbolic components possessing two distinct attracting cycles each of period at least two are bounded, and (ii) we characterize the possible points on the boundary at infinity for some other types of hyperbolic components. For general maps, we prove hyperbolic components whose elements have fixed superattracting basins mapping by degree at least three are unbounded.
doi_str_mv 10.1007/s11856-020-2044-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440026815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440026815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e11f79e416e11169f67aac1c01f1ed31de26a3a6cc88abc60996b9b31b429d5c3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9FM0kzboy7-g0Uveg5pOtVddpOadBG_vVkrePI0A_PeG96PsXMQlyBEdZUAao1cSMGlKEuOB2wGGjWvNcAhmwkhgUuo5DE7SWkthFYVqBlTN2HnO-o8pVSEvnj_Gii2YbNyhQvbIXjy48_hiT7H4IutHdIpO-rtJtHZ75yz17vbl8UDXz7fPy6ul9wpwJETQF81VALmDbDpsbLWgRPQA3UKOpJolUXn6tq2DkXTYNu0CtpSNp12as4uptwhho8dpdGswy76_NLIssyNsAadVTCpXAwpRerNEFdbG78MCLNnYyY2JrMxezYGs0dOnpS1_o3iX_L_pm-jI2Xr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440026815</pqid></control><display><type>article</type><title>Boundedness of hyperbolic components of Newton maps</title><source>SpringerNature Complete Journals</source><creator>Nie, Hongming ; Pilgrim, Kevin M.</creator><creatorcontrib>Nie, Hongming ; Pilgrim, Kevin M.</creatorcontrib><description>We investigate boundedness of hyperbolic components in the moduli space of Newton maps. For quartic maps, (i) we prove hyperbolic components possessing two distinct attracting cycles each of period at least two are bounded, and (ii) we characterize the possible points on the boundary at infinity for some other types of hyperbolic components. For general maps, we prove hyperbolic components whose elements have fixed superattracting basins mapping by degree at least three are unbounded.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-020-2044-6</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Group Theory and Generalizations ; Mapping ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Israel journal of mathematics, 2020-07, Vol.238 (2), p.837-869</ispartof><rights>The Hebrew University of Jerusalem 2020</rights><rights>The Hebrew University of Jerusalem 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e11f79e416e11169f67aac1c01f1ed31de26a3a6cc88abc60996b9b31b429d5c3</citedby><cites>FETCH-LOGICAL-c316t-e11f79e416e11169f67aac1c01f1ed31de26a3a6cc88abc60996b9b31b429d5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-020-2044-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-020-2044-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Nie, Hongming</creatorcontrib><creatorcontrib>Pilgrim, Kevin M.</creatorcontrib><title>Boundedness of hyperbolic components of Newton maps</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>We investigate boundedness of hyperbolic components in the moduli space of Newton maps. For quartic maps, (i) we prove hyperbolic components possessing two distinct attracting cycles each of period at least two are bounded, and (ii) we characterize the possible points on the boundary at infinity for some other types of hyperbolic components. For general maps, we prove hyperbolic components whose elements have fixed superattracting basins mapping by degree at least three are unbounded.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Group Theory and Generalizations</subject><subject>Mapping</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9FM0kzboy7-g0Uveg5pOtVddpOadBG_vVkrePI0A_PeG96PsXMQlyBEdZUAao1cSMGlKEuOB2wGGjWvNcAhmwkhgUuo5DE7SWkthFYVqBlTN2HnO-o8pVSEvnj_Gii2YbNyhQvbIXjy48_hiT7H4IutHdIpO-rtJtHZ75yz17vbl8UDXz7fPy6ul9wpwJETQF81VALmDbDpsbLWgRPQA3UKOpJolUXn6tq2DkXTYNu0CtpSNp12as4uptwhho8dpdGswy76_NLIssyNsAadVTCpXAwpRerNEFdbG78MCLNnYyY2JrMxezYGs0dOnpS1_o3iX_L_pm-jI2Xr</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Nie, Hongming</creator><creator>Pilgrim, Kevin M.</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>Boundedness of hyperbolic components of Newton maps</title><author>Nie, Hongming ; Pilgrim, Kevin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e11f79e416e11169f67aac1c01f1ed31de26a3a6cc88abc60996b9b31b429d5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Group Theory and Generalizations</topic><topic>Mapping</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Hongming</creatorcontrib><creatorcontrib>Pilgrim, Kevin M.</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Hongming</au><au>Pilgrim, Kevin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundedness of hyperbolic components of Newton maps</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>238</volume><issue>2</issue><spage>837</spage><epage>869</epage><pages>837-869</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>We investigate boundedness of hyperbolic components in the moduli space of Newton maps. For quartic maps, (i) we prove hyperbolic components possessing two distinct attracting cycles each of period at least two are bounded, and (ii) we characterize the possible points on the boundary at infinity for some other types of hyperbolic components. For general maps, we prove hyperbolic components whose elements have fixed superattracting basins mapping by degree at least three are unbounded.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-020-2044-6</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-2172
ispartof Israel journal of mathematics, 2020-07, Vol.238 (2), p.837-869
issn 0021-2172
1565-8511
language eng
recordid cdi_proquest_journals_2440026815
source SpringerNature Complete Journals
subjects Algebra
Analysis
Applications of Mathematics
Group Theory and Generalizations
Mapping
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
title Boundedness of hyperbolic components of Newton maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundedness%20of%20hyperbolic%20components%20of%20Newton%20maps&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Nie,%20Hongming&rft.date=2020-07-01&rft.volume=238&rft.issue=2&rft.spage=837&rft.epage=869&rft.pages=837-869&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-020-2044-6&rft_dat=%3Cproquest_cross%3E2440026815%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440026815&rft_id=info:pmid/&rfr_iscdi=true