Boundedness of hyperbolic components of Newton maps
We investigate boundedness of hyperbolic components in the moduli space of Newton maps. For quartic maps, (i) we prove hyperbolic components possessing two distinct attracting cycles each of period at least two are bounded, and (ii) we characterize the possible points on the boundary at infinity for...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2020-07, Vol.238 (2), p.837-869 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 869 |
---|---|
container_issue | 2 |
container_start_page | 837 |
container_title | Israel journal of mathematics |
container_volume | 238 |
creator | Nie, Hongming Pilgrim, Kevin M. |
description | We investigate boundedness of hyperbolic components in the moduli space of Newton maps. For quartic maps, (i) we prove hyperbolic components possessing two distinct attracting cycles each of period at least two are bounded, and (ii) we characterize the possible points on the boundary at infinity for some other types of hyperbolic components. For general maps, we prove hyperbolic components whose elements have fixed superattracting basins mapping by degree at least three are unbounded. |
doi_str_mv | 10.1007/s11856-020-2044-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440026815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440026815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e11f79e416e11169f67aac1c01f1ed31de26a3a6cc88abc60996b9b31b429d5c3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9FM0kzboy7-g0Uveg5pOtVddpOadBG_vVkrePI0A_PeG96PsXMQlyBEdZUAao1cSMGlKEuOB2wGGjWvNcAhmwkhgUuo5DE7SWkthFYVqBlTN2HnO-o8pVSEvnj_Gii2YbNyhQvbIXjy48_hiT7H4IutHdIpO-rtJtHZ75yz17vbl8UDXz7fPy6ul9wpwJETQF81VALmDbDpsbLWgRPQA3UKOpJolUXn6tq2DkXTYNu0CtpSNp12as4uptwhho8dpdGswy76_NLIssyNsAadVTCpXAwpRerNEFdbG78MCLNnYyY2JrMxezYGs0dOnpS1_o3iX_L_pm-jI2Xr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440026815</pqid></control><display><type>article</type><title>Boundedness of hyperbolic components of Newton maps</title><source>SpringerNature Complete Journals</source><creator>Nie, Hongming ; Pilgrim, Kevin M.</creator><creatorcontrib>Nie, Hongming ; Pilgrim, Kevin M.</creatorcontrib><description>We investigate boundedness of hyperbolic components in the moduli space of Newton maps. For quartic maps, (i) we prove hyperbolic components possessing two distinct attracting cycles each of period at least two are bounded, and (ii) we characterize the possible points on the boundary at infinity for some other types of hyperbolic components. For general maps, we prove hyperbolic components whose elements have fixed superattracting basins mapping by degree at least three are unbounded.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-020-2044-6</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Group Theory and Generalizations ; Mapping ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Israel journal of mathematics, 2020-07, Vol.238 (2), p.837-869</ispartof><rights>The Hebrew University of Jerusalem 2020</rights><rights>The Hebrew University of Jerusalem 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e11f79e416e11169f67aac1c01f1ed31de26a3a6cc88abc60996b9b31b429d5c3</citedby><cites>FETCH-LOGICAL-c316t-e11f79e416e11169f67aac1c01f1ed31de26a3a6cc88abc60996b9b31b429d5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-020-2044-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-020-2044-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Nie, Hongming</creatorcontrib><creatorcontrib>Pilgrim, Kevin M.</creatorcontrib><title>Boundedness of hyperbolic components of Newton maps</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>We investigate boundedness of hyperbolic components in the moduli space of Newton maps. For quartic maps, (i) we prove hyperbolic components possessing two distinct attracting cycles each of period at least two are bounded, and (ii) we characterize the possible points on the boundary at infinity for some other types of hyperbolic components. For general maps, we prove hyperbolic components whose elements have fixed superattracting basins mapping by degree at least three are unbounded.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Group Theory and Generalizations</subject><subject>Mapping</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9FM0kzboy7-g0Uveg5pOtVddpOadBG_vVkrePI0A_PeG96PsXMQlyBEdZUAao1cSMGlKEuOB2wGGjWvNcAhmwkhgUuo5DE7SWkthFYVqBlTN2HnO-o8pVSEvnj_Gii2YbNyhQvbIXjy48_hiT7H4IutHdIpO-rtJtHZ75yz17vbl8UDXz7fPy6ul9wpwJETQF81VALmDbDpsbLWgRPQA3UKOpJolUXn6tq2DkXTYNu0CtpSNp12as4uptwhho8dpdGswy76_NLIssyNsAadVTCpXAwpRerNEFdbG78MCLNnYyY2JrMxezYGs0dOnpS1_o3iX_L_pm-jI2Xr</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Nie, Hongming</creator><creator>Pilgrim, Kevin M.</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>Boundedness of hyperbolic components of Newton maps</title><author>Nie, Hongming ; Pilgrim, Kevin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e11f79e416e11169f67aac1c01f1ed31de26a3a6cc88abc60996b9b31b429d5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Group Theory and Generalizations</topic><topic>Mapping</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Hongming</creatorcontrib><creatorcontrib>Pilgrim, Kevin M.</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Hongming</au><au>Pilgrim, Kevin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundedness of hyperbolic components of Newton maps</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>238</volume><issue>2</issue><spage>837</spage><epage>869</epage><pages>837-869</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>We investigate boundedness of hyperbolic components in the moduli space of Newton maps. For quartic maps, (i) we prove hyperbolic components possessing two distinct attracting cycles each of period at least two are bounded, and (ii) we characterize the possible points on the boundary at infinity for some other types of hyperbolic components. For general maps, we prove hyperbolic components whose elements have fixed superattracting basins mapping by degree at least three are unbounded.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-020-2044-6</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2172 |
ispartof | Israel journal of mathematics, 2020-07, Vol.238 (2), p.837-869 |
issn | 0021-2172 1565-8511 |
language | eng |
recordid | cdi_proquest_journals_2440026815 |
source | SpringerNature Complete Journals |
subjects | Algebra Analysis Applications of Mathematics Group Theory and Generalizations Mapping Mathematical and Computational Physics Mathematics Mathematics and Statistics Theoretical |
title | Boundedness of hyperbolic components of Newton maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundedness%20of%20hyperbolic%20components%20of%20Newton%20maps&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Nie,%20Hongming&rft.date=2020-07-01&rft.volume=238&rft.issue=2&rft.spage=837&rft.epage=869&rft.pages=837-869&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-020-2044-6&rft_dat=%3Cproquest_cross%3E2440026815%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440026815&rft_id=info:pmid/&rfr_iscdi=true |